Skip to main content

Advertisement

Log in

The effects of the van der Waals potential energy on the Young’s modulus of a polymer: comparison between molecular dynamics simulation and experiment

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation were employed to investigate the effect of changing the potential energies describing primary and secondary bonds on the Young’s modulus of a polymer. The energies were changed by arbitrarily modifying the parameters of the potential energy model function. The parameters influence the structure of the polymer and its global energy, eventually causing changes to the Young’s modulus. The van der Waals energy describing secondary bonds gives the most significant contribution to the changes. Increasing the energy increases the density and Young’s modulus. The trends are in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Rackley FA, Turner HS, Wall WF, Haward RN (1974) Preparation of crosslinked polymers with increased modulus by high-pressure polymerization. J Polym Sci Polym Phys 12:1355–1370

    Article  CAS  Google Scholar 

  2. Phan AC, Tang M-L, Jean-François Nguyen N, Ruse D, Sadoun M (2014) High temperature high-pressure polymerized urethane dimethacrylate—Mechanical properties and monomer release. Dent Mater 30(3):350–356

    Article  CAS  Google Scholar 

  3. Nguyen J-F, Véronique Migonney N, Ruse D, Sadoun M (2012) Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater 28(5):529–534

    Article  CAS  Google Scholar 

  4. Holliday L, White J (1971) The stiffness of polymers in relation to their structure. Pure Appl Chem 26:545

    Article  CAS  Google Scholar 

  5. Seitz JT (1993) The estimation of mechanical properties of polymers from molecular structure. J Appl Polym Sci 49:1331–1351

    Article  CAS  Google Scholar 

  6. Fedors R (1974) Method for Estimating Both the Solubility Parameters and Molar Volumes of liquids. Polym Eng Sci 14:472

    Article  CAS  Google Scholar 

  7. Brown D, Clarke JHR (1991) Molecular dynamics simulation of an amorphous polymer under tension: I. Phenomenology. Macromolecules 24(8):2075–2082

    Article  CAS  Google Scholar 

  8. Yang L, Srolovitz DJ, Yee AF (1997) Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems. J Chem Phys 107:4396

    Article  CAS  Google Scholar 

  9. Fortunelli A, Geloni C (2004) Simulation of the plastic behavior of amorphous glassy bis-phenol-A-polycarbonate. J Chem Phys 121(10):4941–4950

    Article  CAS  Google Scholar 

  10. Lyulin AV, Li J (2006) Atomistic Simulation of Bulk Mechanics and Local Dynamics of Amorphous Polymers. Macromolecular Symposia 237(1):108–118

    Article  CAS  Google Scholar 

  11. Capaldi F, Boyce MC, Rutledge GC (2004) Molecular response of a glassy polymer to active deformation. Polymer 45:1391–1399

    Article  CAS  Google Scholar 

  12. Hossain D, Tschopp M, Ward D, Bouvard J, Wang P, Horstemeyer M (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51:6071–6083

    Article  CAS  Google Scholar 

  13. Sahputra IH, Echtermeyer A (2013) Effects of temperature and strain rate on the deformation of amorphous polyethylene: a comparison between molecular dynamics simulations and experimental results. Model Simul Mater Sci Eng 21:065016

    Article  Google Scholar 

  14. Sahputra IH and Echtermeyer AT, (2014) "Creep-fatigue relationship in polymer: a molecular dynamics simulations approach," Macromolecular Theory and Simulations

  15. Sahputra IH, Alexiadis A, Adams MJ (2018a) Temperature and configurational effects on the Young’s modulus of poly (methyl methacrylate): a molecular dynamics study comparing the DREIDING, AMBER and OPLS force fields. Mol Simul 44(9):774–780

    Article  CAS  Google Scholar 

  16. Wen-Sheng Xu, Douglas JF, Freed KF (2016) Influence of Cohesive Energy on the Thermodynamic Properties of a Model Glass-Forming Polymer Melt. Macromolecules 49(21):8341–8354

    Article  Google Scholar 

  17. Xu W-S, Douglas JF, Freed KF (2016) Influence of cohesive energy on relaxation in a model glass-forming polymer melt. Macromolecules 49(21):8355–8370

    Article  CAS  Google Scholar 

  18. Sahputra IH and Echtermeyer A, (2013) "Molecular Dynamics Simulation of Polycarbonate Deformation: Effect of Temperature and Strain Rate," in  International Conference on Computational Mechanics (CM13), Durham

  19. http://www.scienomics.com/ ,

  20. Mayo SL, Olafson BD (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  21. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  22. Bicerano J, (2002) Prediction of Polymer Properties, Marcel Dekker

  23. Sahputra IH, Alexiadis A, Adams MJ (2018b) Temperature dependence of the Young’s modulus of polymers calculated using a hybrid molecular mechanics-molecular dynamics method. J Phys: Condens Matter 30(35):355901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwan H Sahputra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahputra, I.H., Echtermeyer, A. The effects of the van der Waals potential energy on the Young’s modulus of a polymer: comparison between molecular dynamics simulation and experiment. J Polym Res 28, 47 (2021). https://doi.org/10.1007/s10965-021-02413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02413-4

Keywords

Navigation