Skip to main content
Log in

Elastomer based nanocomposites with reduced graphene oxide nanofillers allow for enhanced tensile and electrical properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Here, flexible nanocomposites based on reduced graphene oxide (RGO) and commercial elastomers such as poly (acrylonitrile-ran-butadiene) (PANB) and poly (styrene-block-isoprene-block-styrene) (SIS) have been developed with enhanced electrical and mechanical properties due to the RGO fine dispersion. The RGO incorporation via stepwise addition resulted in well-dispersed RGO platelets in all polymer matrices. This allowed us to attain a comparatively low percolation threshold concentration (4.2 wt.% for all nanocomposites), at which the conductivity and current flow through the nanocomposites appreciably increased. The nanocomposite conductivity further increased with the increase of the RGO loading independently of the polymer type (PANB or SIS) or PANB molecular weight and acrylonitrile content. The highest conductivities obtained in this work are in the range 7.5–8.0 × 10–5 S/cm. Mechanical properties measured for SIS and PANB nanocomposites showed that tensile strength increases (in the case of SIS, by a factor of three) with the increase of the RGO content most likely due to physical crosslinking of the polymer with RGO. Improved electrical and mechanical properties of these nanocomposites make them promising as microwave absorbers or antistatic coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao F, Zhang G, Zhao S, Cui J, Gao A, Yan Y (2018). Compos. Sci. Technol. 159:232–239

    Article  CAS  Google Scholar 

  2. Chang H, Wu H (2013). Energy Environ. Sci. 6(12):3483–3507

    Article  CAS  Google Scholar 

  3. Lai D, Chen X, Liu X, Wang Y (2018). ACS Appl. Nanostruct. Mater. 1(10):5854–5864

    Article  CAS  Google Scholar 

  4. Dutta D, Ganda ANF, Chih J-K, Huang C-C, Tseng C-J, Su C-Y (2018) Revisiting graphene-polymer nanocomposite for enhancing anticorrosion performance: a new insight into interface chemistry and diffusion model. Nanoscale 10(26):12612–12624

    Article  CAS  PubMed  Google Scholar 

  5. Loomis J, King B, Burkhead T, Xu P, Bessler N, Terentjev E, Panchapakesan B (2012) Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 23(4):045501

    Article  PubMed  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  7. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD (2010). J. Phys. Chem. C 114(14):6426–6432

    Article  CAS  Google Scholar 

  9. Gao X, Jang J, Nagase S (2010). J. Phys. Chem. C 114(2):832–842

    Article  CAS  Google Scholar 

  10. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008). Nano Lett. 8(10):3137–3140

    Article  CAS  PubMed  Google Scholar 

  11. An F, Li X, Min P, Liu P, Jiang Z-G, Yu Z-Z (2018). ACS Appl. Mater. Interfaces 10(20):17383–17392

    Article  CAS  PubMed  Google Scholar 

  12. Feng Y, Li X, Zhao X, Ye Y, Zhou X, Liu H, Liu C, Xie X (2018). ACS Appl. Mater. Interfaces 10(25):21628–21641

    Article  CAS  PubMed  Google Scholar 

  13. Liu S, Liu J, Xu Z, Liu Y, Li P, Guo F, Wang F, Liu Y, Yang M, Gao W, Gao C (2018) Artificial Bicontinuous Laminate Synergistically Reinforces and Toughens Dilute Graphene Composites. ACS Nano 12:11236–11243

    Article  CAS  PubMed  Google Scholar 

  14. Zhu G, Dufresne A, Lin N (2017). ACS Sustain. Chem. Eng. 5(10):9431–9440

    Article  CAS  Google Scholar 

  15. Ahmad N, Sultana S, Azam A, Sabir S, Khan MZ (2017). New J. Chem. 41(18):10198–10207

    Article  CAS  Google Scholar 

  16. Xiao Z, Han J, Xiao J, Song Q, Zhang X, Kong D, Yang Q-H, Zhi L (2018). Nanoscale 10(22):10351–10356

    Article  CAS  PubMed  Google Scholar 

  17. Arzac A, Leal GP, Fajgar R, Tomovska R (2014). Part. Part. Syst. Charact. 31(1):143–151

    Article  CAS  Google Scholar 

  18. Kim H, Miura Y, Macosko CW (2010). Chem. Mater. 22(11):3441–3450

    Article  CAS  Google Scholar 

  19. Hamidinejad M, Zhao B, Zandieh A, Moghimian N, Filleter T, Park CB (2018). ACS Appl. Mater. Interfaces 10(36):30752–30761

    Article  CAS  PubMed  Google Scholar 

  20. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6):327–331

    Article  CAS  PubMed  Google Scholar 

  21. Arzac A, Leal GP, de la Cal JC, Tomovska R (2017). Macromol. Mater. Eng. 302(1):1600315

    Article  CAS  Google Scholar 

  22. Bourgeat-Lami E, Faucheu J, Noel A (2015). Polym. Chem. 6(30):5323–5357

    Article  CAS  Google Scholar 

  23. Spasevska D, Leal GP, Fernandez M, Gilev JB, Paulis M, Tomovska R (2015). RSC Adv. 5(21):16414–16421

    Article  CAS  Google Scholar 

  24. Thickett SC, Wood N, Ng YH, Zetterlund PB (2014) Hollow hybrid polymer-graphene oxide nanoparticles via Pickering miniemulsion polymerization. Nanoscale 6(15):8590–8594

    Article  CAS  PubMed  Google Scholar 

  25. Noel A, Faucheu J, Rieu M, Viricelle J-P, Bourgeat-Lami E (2014). Compos. Sci. Technol. 95:82–88

    Article  CAS  Google Scholar 

  26. Ansari S, Neelanchery MM, Ushus D (2013). J. Appl. Polym. Sci. 130(6):3902–3908

    CAS  Google Scholar 

  27. Korkut S, Kilic MS, Uzuncar S, Hazer B (2016). Anal. Lett. 49(14):2322–2336

    Article  CAS  Google Scholar 

  28. Li H, Wu S, Wu J, Huang G (2014). J. Polym. Res. 21(5):1–8

    Article  CAS  Google Scholar 

  29. Hu H, Gao Q, Tian G, Hong S, Zhao J, Zhao Y (2018). J. Polym. Res. 25(4):1–10

    Article  CAS  Google Scholar 

  30. Doufnoune R, Haddaoui N (2017). J. Polym. Res. 24(9):1–17

    Article  CAS  Google Scholar 

  31. Guezzout Z, Doufnoune R, Haddaoui N (2017). J. Polym. Res. 24(8):1–15

    Article  CAS  Google Scholar 

  32. Dul S, Pegoretti A, Fambri L (2018). Nanomaterials 8(9):674/671–674/620

    Article  CAS  Google Scholar 

  33. Heo C, Moon H-G, Yoon CS, Chang J-H (2012). J. Appl. Polym. Sci. 124(6):4663–4670

    CAS  Google Scholar 

  34. Hanif HM, Yong KC (2017). Chem. Eng. Trans. 56:973–978

    Google Scholar 

  35. Wang P, Chong H, Zhang J, Lu H (2017). ACS Appl. Mater. Interfaces 9(26):22006–22017

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Chen W, Wang Z, Wang Q (2018). Macromolecules 51(20):7993–8000

    Article  CAS  Google Scholar 

  37. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015). Chem. Mater. 27(6):2100–2106

    Article  CAS  Google Scholar 

  38. Al-Saleh MH (2017). Compos. Sci. Technol. 149:34–40

    Article  CAS  Google Scholar 

  39. Nilsson F, Unge M (2016). J. Phys. D. Appl. Phys. 49(33):335303

    Article  CAS  Google Scholar 

  40. Huang Y, Wang W, Zeng X, Guo X, Zhang Y, Liu P, Ma Y, Zhang Y (2018) J. Appl. Polym. Sci. 135 (32): n/a

  41. Bai L, Sharma R, Cheng X, Macosko CW (2018) Kinetic Control of Graphene Localization in Co-continuous Polymer Blends via Melt Compounding. Langmuir 34(3):1073–1083

    Article  CAS  PubMed  Google Scholar 

  42. Sui G, Yu W, Zhang Q, Chen F, Fu Q (2017). Polymer 123:65–72

    Article  CAS  Google Scholar 

  43. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007). Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  44. Das VK, Mazhar S, Gregor L, Stein BD, Morgan DG, Maciulis NA, Pink M, Losovyj Y, Bronstein LM (2018). ACS Appl. Mater. Interfaces 10(25):21356–21364

    Article  CAS  PubMed  Google Scholar 

  45. Fakhri HA, Husnah M, Aimon AH, Iskandar F (2017) J. Phys.: Conf. Ser. 877 (International Conference on Energy Sciences, 2016): 012073

  46. Saxena S, Tyson TA, Shukla S, Negusse E, Chen H, Bai J (2011). Appl. Phys. Lett. 99(1):013104

    Article  CAS  Google Scholar 

  47. Brycht M, Leniart A, Zavasnik J, Nosal-Wiercinska A, Wasinski K, Polrolniczak P, Skrzypek S, Kalcher K (2018). Anal. Chim. Acta 1035:22–31

    Article  CAS  PubMed  Google Scholar 

  48. Wei X, Mao L, Soler-Crespo RA, Paci JT, Huang J, Nguyen ST, Espinosa HD (2015). Nat. Commun. 6:8029

    Article  CAS  PubMed  Google Scholar 

  49. Wang DH, Hu Y, Zhao JJ, Zeng LL, Tao XM, Chen W (2014). J. Mater. Chem. A 2(41):17415–17420

    Article  CAS  Google Scholar 

  50. Hotta A, Clarke SM, Terentjev EM (2002). Macromolecules 35(1):271–277

    Article  CAS  Google Scholar 

  51. Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995). Macromolecules 28(26):8796–8806

    Article  CAS  Google Scholar 

  52. Wirey M, Hunt M, Blensdorf T, Stein BD, Werner-Zwanziger U, Hanson MA, Mahmoud WE, Al-Ghamdi AA, Carini J, Bronstein LM (2016). Macromol. Chem. Phys. 217(6):794–803

    Article  CAS  Google Scholar 

  53. Peponi L, Tercjak A, Verdejo R, Lopez-Manchado MA, Mondragon I, Kenny JM (2009). J. Phys. Chem. C 113(42):17973–17978

    Article  CAS  Google Scholar 

  54. Kirkpatrick S (1973). Rev. Mod. Phys. 45(4):574–588

    Article  Google Scholar 

  55. Pan Y, Weng GJ, Meguid SA, Bao WS, Zhu ZH, Hamouda AMS (2011). J. Appl. Phys. 110(12):123715

    Article  CAS  Google Scholar 

  56. He H, Li X, Wang J, Qiu T, Fang Y, Song Q, Luo B, Zhang X, Zhi L (2013). Small 9(6):820–824

    Article  CAS  PubMed  Google Scholar 

  57. Kang S, Qiao S, Hu Z, Yu J, Wang Y, Zhu J (2019). J. Mater. Sci. 54(8):6410–6424

    Article  CAS  Google Scholar 

  58. Yan J, Huang Y, Chen X, Wei C (2016). Synth. Met. 221:291–298

    Article  CAS  Google Scholar 

  59. Lima TBS, Silva VO, Araujo ES, Araujo PLB (2019). Macromol. Symp. 383(1):1800051

    Article  CAS  Google Scholar 

  60. Zhang S, Zhang D, Li Z, Yang Y, Sun M, Kong Z, Wang Y, Bai H, Dong W (2018). J. Coat. Technol. Res. 15(6):1333–1341

    Article  CAS  Google Scholar 

  61. Jeon JY, Park SH, Kim DH, Park SS, Park GH, Lee BY (2016). J. Polym. Sci., Part A: Polym. Chem. 54(19):3110–3118

    Article  CAS  Google Scholar 

  62. Isogai Y, Yokoyama A, Nguyen TTB, Sumiyama T, Fruich K, Nonomura C (2018). Polym. Eng. Sci. 58(S1):E151–E157

    Article  CAS  Google Scholar 

  63. Peponi L, Tercjak A, Martin L, Mondragon I, Kenny JM (2011). Express Polym Lett 5(2):104–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. M. gratefully acknowledges the Higher Education Commission (HEC) of Pakistan for the financial support under “International Research Support Initiative Program (IRSIP 24 PS-31)” to pursue a part of this research work at Indiana University, USA. The authors thank the IU Nanoscale Characterization Facility for access to the instrumentation as well as NSF grant #CHE-1048613 which funded the Empyrean from PANalytical. IU Bloomington XPS facility was funded by NSF MRI grant (NSF DMR 1126394). We also thank Dr. Yaroslav Losovyj for help with XPS measurements and Prof. Olga A. Serenko for an advice on mechanical properties.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ilyas Sarwar or Lyudmila M. Bronstein.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazhar, S., Lawson, B.P., Stein, B.D. et al. Elastomer based nanocomposites with reduced graphene oxide nanofillers allow for enhanced tensile and electrical properties. J Polym Res 27, 105 (2020). https://doi.org/10.1007/s10965-020-2039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2039-3

Keywords

Navigation