Skip to main content
Log in

Preparation of polyglycidyl methacrylate microspheres and nanocomposite hydrogels crosslinked by hydrogen bonds

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to meet the application of the flexible wings of the submersible, nanocomposite hydrogels(NC gels) was prepared. Preparation of polyglycidyl methacrylate (PGMA) microspheres and correspondingly NC gels were reported. PGMA microspheres were prepared and modified by N-Methyl-D-glucamine, followed by free radical polymerization of acrylamide in the presence of microspheres to construct nanocomposite hydrogel. FT-IR, XPS and DLS verified a successful introduction of hydroxyl groups during modification. The effects of the particle size and content of the microspheres on the swelling properties of the composite hydrogels were investigated. Hydrogen bonds between hydroxyl groups and polyacrylamide molecular chains play important roles to the swelling property of NC gels. The intermolecular interaction and the crosslinking density were enhanced by the hydrogen bonds, and resultantly, swelling ratio of NC gels decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed J, Yamamoto T, Guo H, Kurokawa T, Nonoyama T, Nakajima T, Gong JP (2015) Friction of zwitterionic hydrogel by dynamic polymer adsorption. Macromolecules 48(15):5394–5401

    Article  CAS  Google Scholar 

  2. Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U-i, Sakai T (2014) “Nonswellable” hydrogel without mechanical hysteresis. Science 343(6173):873–875

    Article  CAS  PubMed  Google Scholar 

  3. Wei Z, Yang JH, Zhou J, Xu F, Zrínyi M, Dussault PH, Osada Y, Chen YM (2014) Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 43(23):8114–8131

    Article  CAS  PubMed  Google Scholar 

  4. Webber MJ, Appel EA, Meijer E, Langer R (2016) Supramolecular biomaterials. Nat Mater 15(1):13–26

    Article  CAS  PubMed  Google Scholar 

  5. Huang Y, Zhong M, Shi F, Liu X, Tang Z, Wang Y, Huang Y, Hou H, Xie X, Zhi C (2017) An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew Chem Int Ed 56(31):9141–9145

    Article  CAS  Google Scholar 

  6. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649

    Article  CAS  PubMed  Google Scholar 

  7. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  8. Sun J-Y, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang CH, Wang MX, Haider H, Yang JH, Sun J-Y, Chen YM, Zhou J, Suo Z (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5(21):10418–10422

    Article  CAS  PubMed  Google Scholar 

  10. Wirthl D, Pichler R, Drack M, Kettlguber G, Moser R, Gerstmayr R, Hartmann F, Bradt E, Kaltseis R, Siket CM Instant tough bonding of hydrogels for soft machines and electronics. Science Advances 3(6):e1700053

  11. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13(7):485–487

    Article  CAS  Google Scholar 

  12. Gu Z, Huang K, Luo Y, Zhang L, Kuang T, Chen Z, Liao G (2018) Double network hydrogel for tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 10(6):e1520

    PubMed  Google Scholar 

  13. Yang Y, Wang X, Yang F, Shen H, Wu D (2016) A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv Mater 28(33):7178–7184

    Article  CAS  PubMed  Google Scholar 

  14. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16):1120–1124

    Article  CAS  Google Scholar 

  15. dos Santos TC, Hernández R, Rescignano N, Boff L, Reginatto FH, Simões CMO, de Campos AM, Mijangos C (2018) Nanocomposite chitosan hydrogels based on PLGA nanoparticles as potential biomedical materials. Eur Polym J 99:456–463

    Article  CAS  Google Scholar 

  16. Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C (2017) Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Interfaces 9(24):20361–20375

    Article  CAS  PubMed  Google Scholar 

  17. Kumar A, Jaiswal M (2016) Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J Appl Polym Sci 133(14)

  18. Song J, Zhang P, Cheng L, Liao Y, Xu B, Bao R, Wang W, Liu W (2015) Nano-silver in situ hybridized collagen scaffolds for regeneration of infected full-thickness burn skin. J Mater Chem B 3(20):4231–4241

    Article  CAS  PubMed  Google Scholar 

  19. Liu M, Ishida Y, Ebina Y, Sasaki T, Hikima T, Takata M, Aida T An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517(7532):68–72

  20. Teng C, Xie D, Wang J, Zhu Y, Jiang L (2016) A strong, underwater superoleophobic PNIPAM–clay nanocomposite hydrogel. J Mater Chem A 4(33):12884–12888

    Article  CAS  Google Scholar 

  21. Wang W, Zhang Y, Liu W (2017) Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 71:1–25

    Article  CAS  Google Scholar 

  22. Pan C, Liu L, Gai G (2017) Recent Progress of Graphene-containing polymer hydrogels: preparations, properties, and applications. Macromol Mater Eng 302(10):1700184

    Article  CAS  Google Scholar 

  23. Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64(9):836–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moughton AO, Hillmyer MA, Lodge TP (2011) Multicompartment block polymer micelles. Macromolecules 45(1):2–19

    Article  CAS  Google Scholar 

  25. Liu Y, Zhu M, Liu X, Zhang W, Sun B, Chen Y, Adler H-JP (2006) High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer 47(1):1–5

    Article  CAS  Google Scholar 

  26. Wu Y, Xia M, Fan Q, Zhu M (2010) Designable synthesis of nanocomposite hydrogels with excellent mechanical properties based on chemical cross-linked interactions. Chem Commun 46(41):7790–7792

    Article  CAS  Google Scholar 

  27. Pan C, Liu L, Chen Q, Zhang Q, Guo G (2017) Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS Appl Mater Interfaces 9(43):38052–38061

    Article  CAS  PubMed  Google Scholar 

  28. Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22(28):14160–14167

    Article  CAS  Google Scholar 

  29. Zhang T, Zuo T, Hu D, Chang C (2017) Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Appl Mater Interfaces 9(28):24230–24237

    Article  CAS  PubMed  Google Scholar 

  30. Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer 49(23):5064–5071

    Article  CAS  Google Scholar 

  31. Wahid F, Yin J-J, Xue D-D, Xue H, Lu Y-S, Zhong C, Chu L-Q (2016) Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279

    Article  CAS  PubMed  Google Scholar 

  32. Wahid F, Wang H-S, Lu Y-S, Zhong C, Chu L-Q (2017) Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol 101:690–695

    Article  CAS  PubMed  Google Scholar 

  33. Ye L, Tang Y, Qiu D (2014) Enhance the mechanical performance of polyacrylamide hydrogel by aluminium-modified colloidal silica. Colloids Surf A Physicochem Eng Asp 447:103–110

    Article  CAS  Google Scholar 

  34. Shao C, Chang H, Wang M, Xu F, Yang J (2017) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9(34):28305–28318

    Article  CAS  PubMed  Google Scholar 

  35. Jia Y, Chen J, Liu W, Yin D (2019) Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy. J Polym Res 26(5):119

    Article  CAS  Google Scholar 

  36. Yin D, Ma L, Liu J, Zhang Q (2014) Pickering emulsion: a novel template for microencapsulated phase change materials with polymer-silica hybrid shell. Energy 64:575

    Article  CAS  Google Scholar 

  37. Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, Liu W (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27(23):3566–3571

    Article  CAS  PubMed  Google Scholar 

  38. Yuan N, Xu L, Wang H, Fu Y, Zhang Z, Liu L, Wang C, Zhao J, Rong J (2016) Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties. ACS Appl Mater Interfaces 8(49):34034–34044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been sponsored by the National Key Research and Development Program of China (No. 2016YFC0301302), Seed Foundation of Innovation and Creation for Graduate Students of NWPU (hosted by CR Yuan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhong Yin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Chen, J., Jia, Y. et al. Preparation of polyglycidyl methacrylate microspheres and nanocomposite hydrogels crosslinked by hydrogen bonds. J Polym Res 27, 86 (2020). https://doi.org/10.1007/s10965-020-2034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2034-8

Keywords

Navigation