Skip to main content
Log in

Effects of magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nanosilica compounds

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We investigated the effect of magnetically modified natural zeolite on the mechanical and damping properties of natural rubber-nanosilica compounds. We used natural rubber SIR 20 technical specified rubber (TSR) reinforced with a nanosilica filler. The results showed that using zeolite modified with magnetite and titanate coupling agent (TCA), which are alternative coupling agents to replace silane coupling agents, and amorphous silica as the filler in natural rubber TSR SIR 20 compounds enhanced the mechanical properties of the TSR vulcanization products. The relationships among the crosslink density, mechanical properties and damping properties were also explored. We also identified that an improvement in the properties resulted from a modification of the white oil softener and filler comprising the zeolite-nanosilica-magnetic blends. The results of magnetically modified zeolite showed that the crosslink density, mechanical properties and damping properties increased significantly. The damping ratio in the sample comprising Si + Fe + Z with or without the white oil softener was higher than that of the other samples herein (ζ > 0.03). Based on this result, a reinforced nanosilica filler with magnetically modified zeolite has the potential to replace carbon black and is applicable to damping devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hair ML, Hertl W (1970). J Phys Chem 74:91

    CAS  Google Scholar 

  2. Dasgupta M, Kar S, Gupta S, Mukhopadhyay R, Bandyopadhyay A (2013). Prog Rubber Plast Recy Tech 29:151–167

    Google Scholar 

  3. Pongdong W, Kummerlöwe C, Vennemann N, Thitithammawong A, Nakason C (2018). J Appl Polym Sci 135:46681

    Google Scholar 

  4. Ooi ZX, Ismail H, Bakar AA (2014). Polym Test 33:145

    CAS  Google Scholar 

  5. Kanking S, Niltui P, Wimolmala E, Sombatsompop N (2012). Mater Des 41:74

    CAS  Google Scholar 

  6. Hariwongsanupab N, Thanawan S, Amornsakchai T, Vallat MF, Mougin K (2017). Polym Test 57:94

    CAS  Google Scholar 

  7. Keerthika B, Umayavalli M, Jeyalalitha T, Krishnaveni N (2016). Ecotoxicol Environ Saf 130:1

    CAS  PubMed  Google Scholar 

  8. Yu P, He H, Jia Y, Tian S, Chen J, Jia D, Luo Y (2016). Polym Test 54:176

    CAS  Google Scholar 

  9. Janssen NA, Hoek G, Simic-Lawson M, Fischer P, van Bree L, ten Brink H, Keuken M, Atkinson RW, Anderson HR, Brunekreef B, Cassee FR (2011). Environ Health Perspect 119:1691–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seliem MK, Komarneni S, Parette R, Katsuki H, Cannon FS, Shahien MG, Khalil AA, Abd El-Gaid IM (2010). Mater Res Innov 14:351–354

    CAS  Google Scholar 

  11. Suprakas SR, Mukul B (1999). Mater Res Bull 34:1187–1194

    Google Scholar 

  12. Sáenz A, Montero ML, Mondragón G (2003). Mater Res Innov 7:68–73

    Google Scholar 

  13. Teh PL, Mohd Ishak ZA, Hashim AS, Karger-Kocsis J, Ishiaku US (2004). Eur Polym J 40:2513–2521

    CAS  Google Scholar 

  14. Kader MA, Kim K, Lee YS, Nah C (2006). J Mater Sci 41:7341–7352

    CAS  Google Scholar 

  15. Valadares LF, Leite CAP, Galembeck F (2006). Polymer 47:672–678

    CAS  Google Scholar 

  16. Fang Q, Liu X, Wang N, Ma C, Yang F (2015). Sci Eng Compos Mater 22:607–612

    CAS  Google Scholar 

  17. Hashim AS, Azahari B, Ikeda Y, Kohjiya S (1997). Rubber Chem Technol 71:289–299

    Google Scholar 

  18. Wagner MP (1987) In: Morton M (ed) Rubber technology. Van Nostrand Reinhold, New York, p 86

    Google Scholar 

  19. Rauline R (1992) U.S. Patent 5,227,425, July 13, 1993; E.P. 0501227A1, September 2, 1992

  20. Mathew G, Huh MY, Rhee JM, Lee MH, Nan C (2004). Polym Adv Technol 15:400

    CAS  Google Scholar 

  21. Schwaiger B, Blume A (2000). Rubb World 222:32–38

    Google Scholar 

  22. Gauthier C, Reynaud E, Vassoille R, Ladouuce-Stelandre L (2004). Polymer 45:2761

    CAS  Google Scholar 

  23. Wolff S, Wang MJ (1992). Rubber Chem Technol 65:329

    CAS  Google Scholar 

  24. Atikler U, Basalp D, Tihminlioglu F (2006). J Appl Polym Sci 102:4460–4467

    CAS  Google Scholar 

  25. Silva RV, de Brito J, Dhir RK (2015). Constr Build Mater 83:108–118

    Google Scholar 

  26. Wibowo E, Rokhmat M, Sutisna, Murniati R, Khairurrijal, Abdullah M (2017). Mater Res Express 4:064002

    Google Scholar 

  27. Inglezakis VJ, Stylianou MA, Loizidou M, Zorpas AA (2016). Desalin Water Treat 57:11610–11622

    CAS  Google Scholar 

  28. Kyziol-Komosinska J, Rosik-Dulewska C, Franus M, Antoszczyszyn-Szpicka P, Czupiol J, Krzyzewska I (2015). Pol J Environ Stud 24(3):1111–1123

    CAS  Google Scholar 

  29. Breck DW (1974) Zeolites molecular sieves: structure, chemistry, and uses. John Wiley, New York, p 465

    Google Scholar 

  30. Dyer A (1988) Zeolites molecular sieves. Wiley, Chichester, p 385

    Google Scholar 

  31. Gianeto GP (1990) Zeolitas Características1st edn. Editorial Innovación Tecnológica, Caracas

    Google Scholar 

  32. Dogan H, Hilmioglu ND (2010). Desalination 258:120–127

    CAS  Google Scholar 

  33. Şener T, Okumuş E, Gürkan T, Yilmaz L (2010). Desalination 261:181–185

    Google Scholar 

  34. Wang W, Zhao D, Yang J, Nishi T, Ito K, Zhao X, Zhang L (2016). Sci Rep 6:22810

    PubMed  PubMed Central  Google Scholar 

  35. Lv L, Bai SX, Zhang H, Wang J, Yang J, Xiao JY (2006). Mater Sci Eng A Struct 433:121–123

    Google Scholar 

  36. Zhou KC, Cao DM, Li ZY (2006). Trans Nonferrous Met Soc China 16:517–521

    CAS  Google Scholar 

  37. Sohn MS, Kim KS, Hong SH (2003). J Appl Polym Sci 87:1595–1601

    CAS  Google Scholar 

  38. Nakatsuka K, Yokoyama H, Shimoiizaka J, Funaki T (1987). J Magn Magn Mater 65:359–362

    CAS  Google Scholar 

  39. Wibowo E, Rokhmat M, Sutisna, Murniati R, Khairurrijal, Abdullah M (2017). Proc Eng 170:8–13

    CAS  Google Scholar 

  40. Wibowo E, Rokhmat M, Sutisna, Murniati R, Khairurrijal, Abdullah M (2015). Adv Mat Res 1112:154–157

    Google Scholar 

  41. Oliveira MG, Soares BG (2001). Polym Polym Compos 9(7):459–468

    CAS  Google Scholar 

  42. Ashraf M, El-Fattah MA, Dardir MM (2014). J Prog Org Coat 78:83–89

    Google Scholar 

  43. Cifriadi A, Chalid M, Puspitasari S (2017). Int J Technol 8:448–457

    Google Scholar 

  44. Murniati R, Novita N, Sutisna, Wibowo E, Iskandar F, Abdullah M (2017). IOP Conf Ser Mat Sci Eng 214:1200.2

    Google Scholar 

  45. Murniati R, Sutisna, Wibowo E, Rokhmat M, Iskandar F, Abdullah M (2017). Proc Eng 170:101–107

    CAS  Google Scholar 

  46. Ramadhan A, Fathurrohman MI, Soegijono B (2015). Proc Chem 16:85–90

    CAS  Google Scholar 

  47. Siriyong T, Keawwattana W, Kasetsart J (2012). Nat Sci 46:918–930

    CAS  Google Scholar 

  48. Mohd Nor NA, Othman N (2016). Proc Chem 19:351–358

    CAS  Google Scholar 

  49. Poh BT, Ng CC (1998). Eur Polym 34:975–979

    CAS  Google Scholar 

  50. Vijayalekshmi V (2009) Studies on Natural Rubber/Clay Nanocomposites: Effect of Maleic Anhydride Grafting of Rubber. Ph.D. Thesis. August 2009

  51. Attharangsan S, Ismail H, Abu Bakar M, Ismail J (2012). Polymer Plast Tech Eng 51:655–662

    CAS  Google Scholar 

  52. Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A (2009). Polymer Plast Tech Eng 48:313–323

    CAS  Google Scholar 

  53. Jovanovic V, Simendic BJ, Jovanovic SS, Moarkovic G, Concovic MM, Chemical J (2009). Ind Chem Eng 15:283–289

    CAS  Google Scholar 

  54. Voet A, Morawski JC, Donnet JB (1977). Rubber Chem Technol 50:342

    CAS  Google Scholar 

  55. Pal PK, De SK (1982). Rubber Chem Technol 55:1370

    CAS  Google Scholar 

  56. Tian Y, Liu Y, He M, Zhao G, Sun Y (2013). Mater Res Bull 48:2002–2005

    CAS  Google Scholar 

  57. da Costa HM, Nunes RCR, Visconte LLY, Furtado CRG (2001). Raw Mater Appl 54:242–249

    Google Scholar 

  58. Al-Nesrawy SH, Mahmood FF, Hadi NM, Abdmoeen FK (2017). J Chem Pharm Sci 10:983–988

    CAS  Google Scholar 

  59. Ismail R, Mahadi ZA, Ishak IS (2018). IOP Conf EES 140:012133

    Google Scholar 

  60. Wibowo E, Sutisna, Rokhmat M, Khairurrijal, Abdullah M (2016). Powd Technol 301:911–919

    CAS  Google Scholar 

  61. Wibowo E, Rokhmat M, Sutisna, Yuliza E, Khairurrijal, Abdullah M (2016). Powder Technol 301:44–57

    CAS  Google Scholar 

  62. An F, Lu C, Li Y, Guo J, Lu X, Lu H et al (2011). Mater Des 33:197–202

    Google Scholar 

  63. Rahmanian S, Thean KS, Suraya AR, Shazed MA, Mohd Salleh MA, Yusoff HM (2013). Mater Des 43:10–16

    CAS  Google Scholar 

  64. Wode F, Tzounis L, Kirsten M, Constantinou M, Georgopanos P, Rangou S (2012) et al. Polymer 53:4438–4447

    CAS  Google Scholar 

  65. Bhattacharyya S, Sinturel C, Bahloul O, Saboungi ML, Thomas S, Salvetat JP (2008). Carbon 46:1037–1045

    CAS  Google Scholar 

  66. Das R, Kumar R, Banerjeea SL, Kundu PP (2014). RSC Adv 4:59265–59274

    CAS  Google Scholar 

  67. SUN CT, BAI JM (1995). Int J Mech Sci 37(4):441–455

    Google Scholar 

  68. Lejon J, Kari L (2009). Plast Rubber Compos 38:321–326

    CAS  Google Scholar 

  69. Steidel RF (1989) An Introduction to Mechanical Vibrations3rd edn. Wiley 37

Download references

Acknowledgements

This work was financially supported in part by the “PDU” program in collaboration with BPKLN of the Ministry of Research and Higher Education of Republic of Indonesia, WCR Research Grant from Ministry of Research and Higher Education of Republic of Indonesia No. 1173/I.C01/PL/2019 and the Research Grant of Institut Teknologi Bandung No. 91 m/I1.C01/PL/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikrajuddin Abdullah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murniati, R., Rahmayanti, H.D., Utami, F.D. et al. Effects of magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nanosilica compounds. J Polym Res 27, 37 (2020). https://doi.org/10.1007/s10965-020-2013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2013-0

Keywords

Navigation