Skip to main content
Log in

Synthesis, gas barrier and molecular simulation of intrinsic high-barrier polyimide bearing carbazole and amide

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel diamine (3,6-CAPDA) bearing carbazole and amide group was prepared. On the basis of 3,6-CAPDA and pyromellitic dianhydride (PMDA), a high-barrier polyimide (3,6-CAPPI) was obtained through a two-step polymerization method. The 3,6-CAPPI displays excellent barrier performances and thermal stability. Its oxygen permeability (OP) and water vapor permeability (WVP) are low to 2.63 cm3·mil·m−2·day−1 and 3.22 g·mil·m−2·day−1, respectively. The 5% weight-loss temperature (Td5%) and glass transition temperature (Tg) are up to 526 °C and 431 °C, respectively. Through a combination of molecular simulation, X-ray diffraction and positron annihilation test, the effet of polymer structure on the barrier properties are fully explored. The results demonstrate that the introduction of carbazole and amide groups not only improves the chain order and rigidity, but also enhances the interchain force of polyimide, which thereby bring about enhancement of crystallinity and decreases of free volume and chain movement of 3,6-CAPPI. These factors lower the gas diffusivity and solubility in polymer matrix. Simultaneous decreases of gas diffusivity and solubility give rise to the notable enhancement of gas barrier for 3,6-CAPPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2.

Similar content being viewed by others

References

  1. Zhang D, Huang T, Duan L (2020) Emerging self-emissive technologies for flexible displays. Adv Mater 32:1902391

    Article  CAS  Google Scholar 

  2. Yan JY, Ho JC, Chen J (2015) Foldable AMOLED display development: Progress and challenges. Inf Disp 31:12–16

    CAS  Google Scholar 

  3. Ma RQ, Hewitt R, Rajan K, Silvernail J, Urbanik K, Hack M, Brown JJ (2008) Flexible active-matrix OLED displays: Challenges and progress. J Soc Inf Disp 16:169–175

    Article  Google Scholar 

  4. Gardonio S, Gregoratti L, Melpignano P, Aballe L, Biondo V, Zamboni R, Murgia M, Caria S, Kiskinova M (2007) Degradation of organic light-emitting diodes under different environment at high drive conditions. Org Electron 8:37–43

    Article  CAS  Google Scholar 

  5. Lewis JS, Weaver MS (2004) Thin-Film Permeation-Barrier Technology for Flexible Organic Light-Emitting Devices. IEEE J Sel Top Quantum Electron 10:45–57

    Article  CAS  Google Scholar 

  6. Gao X, Lin L, Liu Y, Huang X (2015) LTPS TFT Process on Polyimide Substrate for Flexible AMOLED. J Disp Technol 11:666–669

    Article  CAS  Google Scholar 

  7. Kao SC, Li LJ, Hsieh MC, Zhang S, Tsai PM, Sun ZY, Wang DW (2017) 71–1: Invited Paper : The Challenges of Flexible OLED Display Development. SID Symp Dig Tech Pap 48:1034–1037

    Article  CAS  Google Scholar 

  8. Choi MC, Kim Y, Ha CS (2008) Polymers for flexible displays: From material selection to device applications. Prog Polym Sci 33:581–630

    Article  CAS  Google Scholar 

  9. Kumar RS, Auch M, Ou E, Ewald G, Jin CS (2002) Low moisture permeation measurement through polymer substrates for organic light emitting devices. Thin Solid Films 417:120–126

    Article  CAS  Google Scholar 

  10. Wang L, Luo J, Yin J, Zhang H, Wu J, Shi X, Crew E, Xu Z, Rendeng Q, Lu S, Poliks M, Sammakia B, Zhong C-J (2010) Flexible chemiresistor sensors: thin film assemblies of nanoparticles on a polyethylene terephthalate substrate. J Mater Chem 20:907–915

    Article  CAS  Google Scholar 

  11. Ueda M (2001) Plastic substrate with high performance by utilizing a new polycarbonate with addition of antiplasticizer. Proc SPIE-Int Soc Opt Eng 4342:39–44

    Google Scholar 

  12. Yang ZW, Han SH, Yang TL, Ye LN, Zhang DH, Ma HL, Cheng CF (2000) Bias voltage dependence of properties for depositing transparent conducting ITO films on flexible substrate. Thin Solid Films 366:4–7

    Article  CAS  Google Scholar 

  13. Tetsuka H, Ebina T, Tsunoda T, Nanjo H, Mizukami F (2007) Flexible organic electroluminescent devices based on transparent clay films. Nanotechnology 18:355701

    Article  Google Scholar 

  14. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: Syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    Article  CAS  Google Scholar 

  15. Qian G, Chen H, Song G, Dai F, Chen C, Yao J (2020) Superheat-resistant polyimides with ultra-low coefficients of thermal expansion. Polymer 196:122482

    Article  CAS  Google Scholar 

  16. Sundberg P, Karppinen M (2014) Organic and inorganic-organic thin film structures by molecular layer deposition: A review. Beilstein J Nanotechnol 5:1104–1136

    Article  Google Scholar 

  17. Tsai MH, Chang CJ, Lu HH, Liao YF, Tseng IH (2013) Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film. Thin Solid Films 544:324–330

    Article  CAS  Google Scholar 

  18. Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD (2017) 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules 50:7809–7843

    Article  CAS  Google Scholar 

  19. Crist RD, Huang Z, Guo R, Galizia M (2020) Effect of thermal treatment on the structure and gas transport properties of a triptycene-based polybenzoxazole exhibiting configurational free volume. J Membr Sci 597:117759

    Article  CAS  Google Scholar 

  20. Liu YW, Huang J, Tan JH, Zeng Y, Ding Q, Zhang HL, Liu YJ, Xiang XW (2017) Barrier and thermal properties of polyimide derived from a diamine monomer containing a rigid planar moiety. Polym Int 66:1214–1222

    Article  CAS  Google Scholar 

  21. Neyertz S, Brown D (2018) Air Sorption and Separation by Polymer Films at the Molecular Level. Macromolecules 51:7077–7092

    Article  CAS  Google Scholar 

  22. Dutta RC, Bhatia SK (2018) Structure and Gas Transport at the Polymer-Zeolite Interface: Insights from Molecular Dynamics Simulations. ACS Appl Mater Interfaces 10:5992–6005

    Article  CAS  Google Scholar 

  23. Sykes GF, Clair AKS (1986) The effect of molecular structure on the gas transmission rates of aromatic polyimides. J Appl Polym Sci 32:3725–3735

    Article  CAS  Google Scholar 

  24. Tseng IH, Liao YF, Chiang JC, Tsai MH (2012) Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater Chem Phys 136:247–253

    Article  CAS  Google Scholar 

  25. Kim SW, Cha SH (2014) Thermal, mechanical, and gas barrier properties of ethylene-vinyl alcohol copolymer-based nanocomposites for food packaging films: Effects of nanoclay loading. J Appl Polym Sci 131:40289

    Google Scholar 

  26. Inagaki N, Cech V, Narushima K, Takechi Y (2007) Oxygen and water vapor gas barrier poly(ethylene naphthalate) films by deposition of SiOx plasma polymers from mixture of tetramethoxysilane and oxygen. J Appl Polym Sci 104:915–925

    Article  CAS  Google Scholar 

  27. Gargalaka J, Couto RAA, Constantino VRL, Toma HE, Araki K (2012) Influence of the relative amounts of crystalline and amorphous phases on the mechanical properties of polyamide-6 nanocomposites. J Appl Polym Sci 125:3239–3249

    Article  CAS  Google Scholar 

  28. Ebina T, Mizukami F (2007) Flexible Transparent Clay Films with Heat-Resistant and High Gas-Barrier Properties. Adv Mater 19:2450–2453

    Article  CAS  Google Scholar 

  29. Chen JT, Fu YJ, An QF, Lo SC, Zhong YZ, Hu CC, Lee KR, Lai JY (2014) Enhancing polymer/graphene oxide gas barrier film properties by introducing new crystals. Carbon 75:443–451

    Article  CAS  Google Scholar 

  30. la Cruz DSd, Green MD, Ye Y, Elabd YA, Long TE, Winey KI, (2012) Correlating backbone-to-backbone distance to ionic conductivity in amorphous polymerized ionic liquids. J Polym Sci, Part B: Polym Phys 50:338–346

    Google Scholar 

  31. Genix AC, Tatou M, Imaz A, Forcada J, Schweins R, Grillo I, Oberdisse J (2012) Modeling of Intermediate Structures and Chain Conformation in Silica-Latex Nanocomposites Observed by SANS During Annealing. Macromolecules 45:1663–1675

    Article  CAS  Google Scholar 

  32. Mattozzi A, Hedenqvist MS, Gedde UW (2007) Diffusivity of n-hexane in poly(ethylene-stat-octene)s assessed by molecular dynamics simulation. Polymer 48:5174–5180

    Article  CAS  Google Scholar 

  33. Liao K-S, Chen H, Awad S, Yuan J-P, Hung W-S, Lee K-R, Lai J-Y, Hu C-C, Jean YC (2011) Determination of Free-Volume Properties in Polymers Without Orthopositronium Components in Positron Annihilation Lifetime Spectroscopy. Macromolecules 44:6818–6826

    Article  CAS  Google Scholar 

  34. Konnertz N, Ding Y, Harrison WJ, Budd PM, Schönhals A, Böhning M (2017) Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). J Membr Sci 529:274–285

    Article  CAS  Google Scholar 

  35. Volgin IV, Larin SV, Abad E, Lyulin SV (2017) Molecular Dynamics Simulations of Fullerene Diffusion in Polymer Melts. Macromolecules 50:2207–2218

    Article  CAS  Google Scholar 

  36. Neyertz S, Brown D, Pandiyan S, van der Vegt NFA (2010) Carbon Dioxide Diffusion and Plasticization in Fluorinated Polyimides. Macromolecules 43:7813–7827

    Article  CAS  Google Scholar 

  37. Musto P, Ragosta G, Mensitieri G, Lavorgna M (2007) On the molecular mechanism of H2O diffusion into polyimides: A vibrational spectroscopy investigation. Macromolecules 40:9614–9627

    Article  CAS  Google Scholar 

  38. Vaughn JT, Koros WJ, Johnson JR, Karvan O (2012) Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations. J Membr Sci 401–402:163–174

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51603066), NSAF (U1930203, U1730142), the Natural Science Foundation of Hunan Province (No. 2019JJ40071); the Science Research Project of Hunan Provincial Department of Education (No. 18A257) and the Student Innovation and Entrepreneurship Training Program of China (No. 201911535005). We would like to thank Prof. Zhiquan Chen from Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University for their help in the measurement of the polymer free volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Hua Tan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1168 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YW., Tang, A., Tan, JH. et al. Synthesis, gas barrier and molecular simulation of intrinsic high-barrier polyimide bearing carbazole and amide. J Polym Res 28, 31 (2021). https://doi.org/10.1007/s10965-020-02394-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02394-w

Keywords

Navigation