Skip to main content
Log in

Co2O3 and MnO2 as inexpensive catalysts for the ring-opening polymerization of cyclic esters

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The cheaper and easy to handle catalysts are particularly important for catalytic studies. Herein, inexpensive Co2O3 and MnO2 were used as catalysts for the ring-opening polymerization (ROP) of rac-lactide (rac-LA) and ε-caprolactone (ε-CL). The polymerization proceeded in a controlled manner with the formation of high molecular weight (Mn) and narrow dispersity (Ð). Heterotactically enriched (Pr up to 0.7) poly(lactic acid) (PLA) was formed during the polymerization process. MALDI-TOF and 1H NMR analyses of low Mn oligomer from rac-LA indicated that the polymerization followed an activated monomer mechanism. The data on the polymerization kinetics showed that the polymerization followed first order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Tschaplinski T (2006) Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  2. Williams CK, Hillmyer MA (2008) Polym Rev 48:1–10

    Article  CAS  Google Scholar 

  3. Tschan MJL, Brulé E, Haquette P, Thomas CM (2012) Polym Chem 3:836–851

    Article  CAS  Google Scholar 

  4. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Chem Rev 104:6147–6176

    Article  CAS  PubMed  Google Scholar 

  5. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  6. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Chem Soc Rev 42:1147–1235

    Article  CAS  PubMed  Google Scholar 

  7. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Chem Rev 99:3181–3198

    Article  CAS  PubMed  Google Scholar 

  8. Jerome C, Lecomte P (2008) Adv Drug Delivery Rev 60:1056–1076

    Article  CAS  Google Scholar 

  9. Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S (2007) Prog Polym Sci 32:247–282

    Article  CAS  Google Scholar 

  10. Langer R, Vacanti JP (1993) Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  11. Mandal M, Chakraborty D, Ramkumar V (2015) RSC Adv 5:28536–28553

    Article  CAS  Google Scholar 

  12. Gao Y, Dai Z, Zhang J, Ma X, Tang N, Wu J (2014) Inorg Chem 53:716–726

    Article  CAS  PubMed  Google Scholar 

  13. Yu XF, Zhang C, Wang ZX (2013) Organometallics 32:3262–3268

    Article  CAS  Google Scholar 

  14. Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) J Am Chem Soc 123:3229–3238

    Article  CAS  PubMed  Google Scholar 

  15. Kuzdrowska M, Annunziata L, Marks S, Schmid M, Jaffredo CG, Roesky PW, Guillaume SM, Maron L (2013) Dalton Trans 42:9352–9360

    Article  CAS  PubMed  Google Scholar 

  16. Mandal M, Chakraborty D (2016) J Polym Sci A Polym Chem 54:809–824

    Article  CAS  Google Scholar 

  17. Chakraborty D, Chokkapu ER, Mandal M, Gowda RR, Ramkumar V (2016) ChemistrySelect 1:5218–5229

    Article  CAS  Google Scholar 

  18. Hsu SY, Hu CH, Tu CY, Lin CH, Chen RY, Datta A, Huang JH (2014) Eur J Inorg Chem 1965–1973

  19. Mandal M, Monkowius U, Chakraborty D (2016) J Polym Res 23:220

    Article  Google Scholar 

  20. Tsai CY, Du HC, Chang JC, Huang BH, Ko BT, Lin CC (2014) RSC Adv 4:14527–14537

    Article  CAS  Google Scholar 

  21. Wang L, Poirier V, Ghiotto F, Bochmann M, Cannon RD, Carpentier JF, Sarazin Y (2014) Macromolecules 47:2574–2584

    Article  CAS  Google Scholar 

  22. Saha TK, Mandal M, Thunga M, Ramkumar V, Chakraborty D (2013) Dalton Trans 42:10304–10314

    Article  CAS  PubMed  Google Scholar 

  23. Chmura AJ, Chuck CJ, Davidson MG, Jones MD, Lunn MD, Bull SD, Mahon MF (2007) Angew Chem Int Ed 46:2280–2283

    Article  CAS  Google Scholar 

  24. Mandal M, List M, Teasdale I, Redhammer G, Chakraborty D, Monkowius U (2018) Monatsh Chem 149:783–790

    Article  CAS  PubMed  Google Scholar 

  25. Mandal M, Ramkumar V, Chakraborty D (2019) Polym Chem 10:3444–3460

    Article  CAS  Google Scholar 

  26. Aluthge DC, Patrick BO, Mehrkhodavandi P (2013) Chem Commun 49:4295–4297

    Article  CAS  Google Scholar 

  27. Saha TK, Mandal M, Chakraborty D, Ramkumar V (2013) New J Chem 37:949–960

    Article  CAS  Google Scholar 

  28. O’Keefe BJ, Breyfogle LE, Hillmyer MA, Tolman WB (2002) J Am Chem Soc 124:4384–4393

    Article  PubMed  Google Scholar 

  29. Chakraborty D, Rajashekhar B, Mandal M, Ramkumar V (2018) J Organomet Chem 871:111–121

    Article  CAS  Google Scholar 

  30. Mandal M, Monkowius U, Chakraborty D (2016) New J Chem 40:9824–9839

    Article  CAS  Google Scholar 

  31. Rajashekhar B, Mandal M, Chakraborty D, Ramkumar V (2017) ChemistrySelect 2:8408–8417

    Article  CAS  Google Scholar 

  32. Mandal M, Oppelt K, List M, Teasdale I, Chakraborty D, Monkowius U (2016) Monatsh Chem 147:1883–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandal M (2020) J Organomet Chem 907:121067

    Article  CAS  Google Scholar 

  34. Mandal M, Chakraborty D (2020) Polym Sci Ser B 62:597–601

    Article  Google Scholar 

  35. Gilding DK, Read AM (1979) Polymer 20:1459–1464

    Article  CAS  Google Scholar 

  36. Tschan MJL, Guo J, Raman SK, Brulé E, Roisnel T, Rager MN, Legay R, Durieux G, Rigaude B, Thomas CM (2014) Dalton Trans 43:4550–4564

    Article  CAS  PubMed  Google Scholar 

  37. Rajashekhar B, Chakraborty D (2014) Polym Bull 71:2185–2203

    Article  CAS  Google Scholar 

  38. Daneshmand P, Schaper F (2015) Dalton Trans 44:20449–20458

    Article  CAS  PubMed  Google Scholar 

  39. Yuan C, Xu X, Zhang Y, Ji S (2012) Chin J Chem 30:1474–1478

    Article  CAS  Google Scholar 

  40. Thomas C, Gladysz JA (2014) ACS Catal 4:1134–1138

    Article  CAS  Google Scholar 

  41. Zhang J, Wang B, Wang L, Sun J, Zhang Y, Cao Z, Wu Z (2018) Appl Organometal Chem 32:e4077

    Google Scholar 

  42. Praban S, Piromjitpong P, Balasanthiran V, Jayaraj S, Chisholm MH, Tantirungrotechai J, Phomphrai K (2019) Dalton Trans 48:3223–3230

    Article  CAS  PubMed  Google Scholar 

  43. Yang Z, Hu C, Duan R, Sun Z, Zhang H, Pang X, Li L (2019) Asian J Org Chem 8:376–384

    Article  CAS  Google Scholar 

  44. Sánchez-Barba LF, Garcés A, Fernández-Baeza J, Otero A, Alonso-Moreno C, Lara-Sánchez A, Rodríguez AM (2011) Organometallics 30:2775–2789

    Article  Google Scholar 

  45. Aluthge DC, Yan EX, Ahn JM, Mehrkhodavandi P (2014) Inorg Chem 53:6828–6836

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mrinmay Mandal or Debashis Chakraborty.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supporting information

Supporting information is available in the online version of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Supplementary file2 (DOCX 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Chakraborty, D. Co2O3 and MnO2 as inexpensive catalysts for the ring-opening polymerization of cyclic esters. J Polym Res 28, 52 (2021). https://doi.org/10.1007/s10965-020-02381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02381-1

Keywords

Navigation