Abstract
The effect of the addition of cassava thermoplastic starch on the general properties and the photodegradation behavior of poly(L-lactic acid) (PLLA) was evaluated by blending PLLA with TPS in different weight percentages (5, 10, 15, 20 and 25 wt%). The blends were studied through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical properties. All the studies were performed before and after the photo-degradation in a climatic chamber. It was found that TPS was immiscible with PLLA and reduced Tg, Tm, and Tcc and influence Xc of PLLA, indicating an interaction of the TPS phase with the PLLA matrix, probably due to plasticizer migration. The tension test showed a decrease in the mechanical resistance of the blends, especially at the lowest TPS content; however, an increase in TPS lead to an increase in ductility. On the other hand, the UV degradation resistance was higher for the blends than for L100, possibly due to the protective effect of glycerol. It was concluded that the films obtained were fully biobased and biodegradable with higher UV resistance than the PLLA and with similar ductility.
This is a preview of subscription content, access via your institution.










References
Shah AA, Hasan F, Hameed A, Ahmed S et al (2008) Biotechnol Adv 26:246
Greene J, Wang F et al (2009) In: Society of Plastics Engineers - Global Plastics Environmental Conference, GPEC 2008. p 112
Haider TP, Völker C, Kramm J, Landfester K, Wurm FR et al (2019) Angew Chemie Int Edit 58:50
Garlotta D (2001) J Polym Environ 9:63
Lim LT, Auras R, Rubino M et al (2008) Prog Polym Sci 33:820
Auras R, Lim LT, Selke SEM, Tsuji H et al (2010) Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. John Wiley and Sons
Panchal SS, Vasava DV et al (2020) ACS Omega 5:4370
Tsuji H, Matsumura N, Arakawa Y et al (2016) Polym J 48:1087
Niranjana Prabhu T, Prashantha K et al (2018) Polym Compos 39:2499
Ali Nezamzadeh S, Ahmadi Z, Afshari Taromi F et al (2017) J Appl Polym Sci 134:1
Liu H, Zhang J et al (2011) J Polym Sci Polym Phys 49:1051
Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C et al (2019) Int J Biol Macromol 125:307
Tester RF, Karkalas J et al (2005) In: Steinbüchel A (Ed.) Biopolymers Online
Khan B, Bilal Khan Niazi M, Samin G, Jahan Z et al (2017) J Food Process Eng 40:e12447
Gadhave RV, Das A, Mahanwar PA, Gadekar PT et al (2018) Open Journal of Polymer Chemistry 08:21. https://doi.org/10.4236/ojpchem.2018.82003
Ke T, Sun X et al (2000) Cereal Chem 77:761
Zaaba NF, Ismail H et al (2019) Polym-Plast Technol 58:1945
Leja K, Lewandowicz G et al (2010) Pol J Environ Stud 19:255
Koh JJ, Zhang X, He C et al (2018) Int J Biol Macromol 109:99
González-López ME, Martín del Campo AS, Robledo-Ortíz JR, Arellano M, Pérez-Fonseca AA et al (2020) Polym Degrad Stabil 179:109290
Park JW, Im SS, Kim SH, Kim YH et al (2000) Polym Eng Sci 40:2539
Teixeira EM, Curvelo AAS, Corrêa AC, Marconcini JM, Glenn GM, Mattoso LHC et al (2012) Ind Crops Prod 37:61
Müller CM, Pires ATN, Yamashita F et al (2012) J Brazil Chem Soc 23:426
Huneault MA, Li H et al (2007) Polymer 48:270
Martin O, Avérous L et al (2001) Polymer 42:6209
Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y et al (2004) Chemosphere 55:763
Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y et al (2017) Constr Build Mater 144:525
Copinet A, Bertrand C, Longieras A, Coma V, Couturier Y et al (2003) J Polym Environ 11:169
Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C et al (2002) Polym Degrad Stab 77:17
Aou K, Hsu SL, Kleiner LW, Tang FW et al (2007) J Phys Chem B 111:12322
Reiter G, Strobl GR et al (2007) Progress in Understanding of Polymer Crystallization. Springer, Berlin Heidelberg, Berlin
Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD et al (2004) Carbohydr Polym 58:139
Forssell P, Mikkilä J, Suortti T, Seppälä J, Poutanen K et al (1996) J Macromol Sci A 33:703
Lourdin D, Coignard L, Bizot H, Colonna P et al (1997) Polymer 38:5401
Ferri JM, Garcia-Garcia D, Sánchez-Nacher L, Fenollar O, Balart R et al (2016) Carbohydr Polym 147:60
Quiles-Carrillo L, Duart S, Montanes N, Torres-Giner S, Balart R et al (2018) Mater Des 140:54
Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S et al (2018) Ind Crops Prod 111:878
Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V et al (2015) Polimeros 25:581
Kulinski Z, Piorkowska E et al (2005) Polymer 46:10290
Martino VP, Ruseckaite RA, Jiménez A et al (2006) In: Journal of Thermal Analysis and Calorimetry. p 707
Mano JF, Koniarova D, Reis RL et al (2003) In: Journal of Materials Science: Materials in Medicine. p 127
Saeidlou S, Huneault MA, Li H, Park CB et al (2012) Prog Polym Sci 37:1657
Mandelkern L (2004) Crystallization of Polymers:, vol 2. Cambridge University Press, Cambridge, Kinetics and Mechanisms
Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A et al (2009) Carbohydr Polym 78:422
Jacobsen S, Fritz HG et al (1996) Polym Eng Sci 36:2799
Aggarwal P, Dollimore D et al (1996) Talanta 43:1527
Mitchell MR, Link RE, Yang MH, Lin YH et al (2009) J Test Eval 37:102271
Arboleda GA, Montilla CE, Villada HS, Varona GA et al (2015) Int J Polym Sci 2015:1
Jose S, Aprem AS, Francis B, Chandy MC, Werner P, Alstaedt V, Thomas S et al (2004) Eur Polym J 40:2105
Bhat R, Karim AA et al (2009) Compr Rev Food Sci Food Saf 8:44–58
Peak MJ, Peak JG et al (1980) RadiatRes 83:553
Quispe M, López OV, Villar MA et al (2019) J Renew Mater 7:383
Zhou J, Ma Y, Zhang J, Tong J et al (2009) J Appl Polym Sci 112:99
Villar MA, Barbosa SE, García MA, Castillo LA, López OV et al (2017) Starch-Based Materials in Food Packaging: Processing, Characterization and Applications
Yang SL, Wu ZH, Yang W, Yang MB et al (2008) Polym Test 27:957
Azwa ZN, Yousif BF, Manalo AC, Karunasena W et al (2013) Mater Des 47:424
Ikada E (1997) J Photopolym Sci Technol 10:265
Feldman D (2002) J Polym Environ 10:163
Guillet JE (1972) Pure Appl Chem 30:135
Campos A, Marconcini JM, Martins-Franchetti SM, Mattoso LHC et al (2012) Polym Degrad Stab 97:1948
Acknowledgments
The authors acknowledge funding support from Decanato de Investigación y Desarrollo Universidad Simón Bolívar DID G02. Also, the authors acknowledge the contribution of Professor Alejandro Müller to this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
López, C., Medina, K., D´Ambrosio, R. et al. PLLA and cassava thermoplastic starch blends: crystalinity, mechanical properties, and UV degradation. J Polym Res 28, 26 (2021). https://doi.org/10.1007/s10965-020-02368-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10965-020-02368-y
Keywords
- Poly (lactic acid)
- Thermoplastic starch
- Degradation
- Climatic chamber
- Polymer blend