Skip to main content

Advertisement

Log in

Antibacterial gauze based on the synergistic antibacterial mechanism of antimicrobial peptides and silver nanoparticles

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Antibacterial gauze is commonly used to prevent wound inflammation and infection. In this study, a novel antibacterial gauze was prepared using antimicrobial peptides and silver nanoparticles, achieving a wide antimicrobial spectrum and increased antimicrobial properties. The properties of the antibacterial gauze were analyzed by scanning electron microscopy, energy-dispersive spectrometry, weight gain rate test, Fourier transform infrared spectroscopy, antibacterial test, and cell activity test. The results of energy-dispersive spectrometry and Fourier transform infrared spectroscopy suggested that the antimicrobial peptides and silver nanoparticles were loaded on the surface of the gauze. The prepared gauze exhibited excellent antibacterial properties against Escherichia coli, Salmonella enteritidis, Staphylococcus aureus, and Bacillus cereus due to the synergistic antibacterial effect of the antimicrobial peptides and silver nanoparticles. Compared with antibacterial gauze loaded with high concentrations of silver nanoparticles, the gauze prepared here has better antimicrobial properties and no obvious cytotoxicity to cells. These results indicate that this antibacterial gauze, with good compatibility, is an attractive candidate for application in wound care and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47

    Article  CAS  Google Scholar 

  2. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction (2015). Biomaterials 40 (Complete):1–11

  3. Souza JM, Henriques M, Teixeira P, Fernandes MM, Zille A (2019) Comfort and Infection Control of Chitosan-impregnated Cotton Gauze as Wound Dressing. Fibers Polym 20(5):922–932

    Article  CAS  Google Scholar 

  4. Green and Sustainable Encapsulation of Guava Leaf Extracts (Psidium guajava L.) into Alginate/Starch Microcapsules for Multifunctional Finish over Cotton Gauze (2019). ACS Sustain Chem Eng 7(22):18612–18623

  5. Chipoya MG (2012) Antimicrobial resistance in animal and public health: introduction and classification of antimicrobial agents. Rev Sci Tech 31(1):15 

    Article  Google Scholar 

  6. Abd Elsalam EA, Shabaiek HF, Abdelaziz MM, Khalil IA, El-Sherbiny IM (2020) Fortified hyperbranched PEGylated chitosan-based nano-in-micro composites for treatment of multiple bacterial infections. Int J Biol Macromol 148:1201–121. https://doi.org/10.1016/j.ijbiomac.2019.10.164

    Article  CAS  PubMed  Google Scholar 

  7. Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Mg D, Instanes C, Brunborg G, Gajowik A, Radzikowska J, Wojewódzka M, Kruszewski M (2012) Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214(3):251–258

    Article  CAS  Google Scholar 

  8. Lakshmaiah Narayana J, Chen JY (2015) Antimicrobial peptides: Possible anti-infective agents. Peptides 72:S0196978115001680

    Article  Google Scholar 

  9. Li Z, Liu X, Li Y, Lan X, Leung PH, Li J, Li G, Xie M, Han Y, Lin X (2016) Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-lactic Acid) (PLLA) for biomedical application Scientific Reports 6 https://doi.org/10.1038/srep31149

  10. Wang C, Chen X, Lao J (2020) Screening and Characterization of Ethanol-Producing Yeasts from Sewage Sludge, Soil and Rotten Fruits. J Biobased Mater Bioenergy 14(2):287–293. https://doi.org/10.1166/jbmb.2020.1960

    Article  CAS  Google Scholar 

  11. Cai Q, Yang S, Zhang C, Li Z, Li X, Shen Z, Zhu W (2018) Facile and Versatile Modification of Cotton Fibers for Persistent Antibacterial Activity and Enhanced Hygroscopicity. Acs Applied Materials & Interfaces

  12. Kundu SC, Sunaina S, Ghosh AK (2017) Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute. Carbohydr Polym and Scientific & Technological Aspects of Industrially Important Polysaccharides

  13. Epand RM, Walker C, Epand RF (1858a) Magarvey NA (2016) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta 5:980–987

    Google Scholar 

  14. Epand RM, Walker C, Epand RF (1858b) Magarvey NA (2016) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta-Biomembranes 5:980–987. https://doi.org/10.1016/j.bbamem.2015.10.018

    Article  CAS  Google Scholar 

  15. Shen M, Dong W, Qian J, Zou L Antimicrobial activity and membrane interaction mechanism of the antimicrobial peptides derived from Rana chensinensis with short sequences. Biologia 72 (9)

  16. Yount NY, Yeaman MR (2013) Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci 1277 (1)

  17. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31(49):12416–12423

    Article  CAS  Google Scholar 

  18. Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2015) Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomedicine Nanotechnology Biology & Medicine:S1549963415006000

  19. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  CAS  Google Scholar 

  20. Kim SH, Inje University, Gimhae (2011) Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli. Korean Journal of Microbiology & Biotechnology 39(1):77–85

    Google Scholar 

  21. Elmahdy MM, Eldin TAS, Aly HS, Mohammed FF, Shaalan MI (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Experimental & Toxicologic Pathology Official Journal of the Gesellschaft Für Toxikologische Pathologie 67(1):21–29

    Article  CAS  Google Scholar 

  22. Luo K, Yang Y, Shao Z (2016) Physically Crosslinked Biocompatible Silk-Fibroin-Based Hydrogels with High Mechanical Performance. Adv Func Mater 26(6):872–880. https://doi.org/10.1002/adfm.201503450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the National Natural Science Foundation of China (No. 31830094), Funds of China Agriculture Research System (No. CARS-18-ZJ0102), and the Innovation Program for Chongqing's Overseas Returnees (No. cx2019090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangying Dai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ai, J., Cai, H. et al. Antibacterial gauze based on the synergistic antibacterial mechanism of antimicrobial peptides and silver nanoparticles. J Polym Res 28, 32 (2021). https://doi.org/10.1007/s10965-020-02363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02363-3

Keywords

Navigation