Skip to main content
Log in

Microporous structure and mechanical behavior of separators used for lithium-ion battery

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Three most commonly used commercial polymer separators are selected to investigate the relationship between microstructure and performance of lithium-ion battery separators. The mechanical behavior and failure modes of separators in all probable loading conditions are compared. The scanning electron microscopy, two-dimensional wide-angle X-ray diffraction, and various performance tests show that the separator prepared by the dry process with uniaxial stretching has high anisotropy. Consequently, the tensile strength varies greatly in different directions, the puncture strength is also the lowest. But the parallel arranged lamellae on cross-section act as the support structure for separator, causing better compression resistance and weak delamination trends. While the separators produced by the dry process with biaxial stretching and wet process have comparable strength levels when stretched in different directions and higher puncture strength. But the biaxial stretching leads to the stacked multilayer structure with poor connection or support structure along the thickness direction, causing a weaker compression resistance but stronger delamination trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Lopez J, Mackanic DG, Cui Y, Bao Z et al (2019) Designing polymers for advanced battery chemistries. Nat Rev Mater. 312–330. https://doi.org/10.1038/s41578-019-0103-64

  2. Chen H, Pei A, Lin D, Xie J, Yang A, Xu J, Lin K, Wang J, Wang H, Shi F, Boyle D, Cui Y et al (2019) Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv Energy Mater. 1900858. https://doi.org/10.1002/aenm.2019008589

  3. Cheng F, Liang J, Tao Z, Chen J et al (2011) Functional materials for rechargeable batteries. Adv Mater. 1695–1715. https://doi.org/10.1002/adma.20100358723

  4. Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K et al (2014) Deng Tand Tang H, Advanced separators for Lithium-Ion and Lithium-Sulfur batteries: A review of recent progress. Chemsuschem. 3023–3039. https://doi.org/10.1002/cssc.2016009439

  5. Lu L, Han X, Li J, Hua J, Ouyang M et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060226

  6. Arora P, Zhang ZJ et al (2004) Battery separators. Chem Rev. 4419–4462. https://doi.org/10.1021/cr020738u104

  7. Balakrishnan PG, Ramesh R, Prem Kumar T et al (2006) Safety mechanisms in lithium-ion batteries. J Power Sources. 401–414. https://doi.org/10.1016/j.jpowsour.2005.12.002155

  8. Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F et al (2016) Safety focused modeling of lithium-ion batteries: A review. J Power Sources. 178–192. https://doi.org/10.1016/j.jpowsour.2015.11.100306

  9. Nitta N, Wu F, Lee JT, Yushin G et al (2015) Li-ion battery materials: Present and future. Mater Today. 252–264. https://doi.org/10.1016/j.mattod.2014.10.04018

  10. Goodenough JB, Park K et al (2013) The Li-Ion rechargeable battery: A perspective. J Am Chem Soc. 1167–1176. https://doi.org/10.1021/ja3091438135

  11. Yuan M, Liu K et al (2020) Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J Energy Chem. 58–70https://doi.org/10.1016/j.jechem.2019.08.00843

  12. Lagadec MF, Zahn R, Müller S, Wood V et al (2018) Topological and network analysis of lithium ion battery components: The importance of pore space connectivity for cell operation. Energ Environ Sci. 3194–3200. https://doi.org/10.1039/C8EE00875B11

  13. Kalnaus S, Wang Y, Li J, Kumar A, Turner JA et al (2018) Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries. Extreme Mechanics Letters. 73–80. https://doi.org/10.1016/j.eml.2018.01.00620

  14. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources. 351–364. https://doi.org/10.1016/j.jpowsour.2006.10.065164

  15. Cannarella J, Arnold CB et al (2014) Stress evolution and capacity fade in constrained lithium-ion pouch cells. J Power Sources. 745–751. https://doi.org/10.1016/j.jpowsour.2013.06.165245

  16. Koyama Y, Chin TE, Rhyner U, Holman RK, Hall SR, Chiang YM et al (2006) Harnessing the actuation potential of Solid-State intercalation compounds. Adv Funct Mater. 492–498. https://doi.org/10.1002/adfm.20050063316

  17. Qi Y, Guo H, Hector LG, Timmons A et al (2010) Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation. J Electrochem Soc. A558. https://doi.org/10.1149/1.3327913157

  18. Billaud D, McRae E, Hérold A (1979) Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III). Mater Res Bull. 857–864. https://doi.org/10.1016/0025-5408(79)90149-114

  19. KOHANOFF J, GALLI G, PARRINELLO M et al (1991) THEORETICAL STUDY of LiC6. Le Journal de Physique IV. C5-C351. https://doi.org/10.1051/jp4:199154101

  20. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 31–35. https://doi.org/10.1038/nnano.2007.4113

  21. Zhang X (2016) Sahraei Eand Wang K, Li-ion battery separators, mechanical integrity and failure mechanisms leading to soft and hard internal shorts. Sci Rep-Uk. https://doi.org/10.1038/srep325786

    Article  Google Scholar 

  22. Wu T, Wang K, Xiang M, Fu Q et al (2019) Progresses in manufacturing techniques of lithium‐ion battery separators in China. Chinese J Chem. 1207–1215. https://doi.org/10.1002/cjoc.20190028037

  23. Lin Y, Li X, Meng L, Chen X, Lv F, Zhang Q, Li L et al (2018) Stress-induced microphase separation of interlamellar amorphous phase in hard-elastic isotactic polypropylene film. Polymer. 79–92 https://doi.org/10.1016/j.polymer.2018.06.009148

  24. SADEGHI F, AJJI A, CARREAU P et al (2007) Analysis of microporous membranes obtained from polypropylene films by stretching. J Membrane Sci. 62–71. https://doi.org/10.1016/j.memsci.2007.01.023292

  25. Saffar A, Ajji A, Carreau P, Kamal M et al (2014) The impact of new crystalline lamellae formation during annealing on the properties of polypropylene based films and membranes. Polymer. 3156–3167. https://doi.org/10.1016/j.polymer.2014.05.01755

  26. Ding L, Xu G, Ge Q, Wu T, Yang F, Xiang M et al (2018) Effect of fumed SiO2 on pore formation mechanism and various performances of β-iPP microporous membrane used for lithium-ion battery separator. Chinese J Polym Sci. 536–545. https://doi.org/10.1007/s10118-018-2029-736

  27. Offord GT, Armstrong SR, Freeman BD, Baer E, Hiltner A, Swinnea JS, Paul DR et al (2013) Porosity enhancement in β nucleated isotactic polypropylene stretched films by thermal annealing. Polymer. 2577–2589 https://doi.org/10.1016/j.polymer.2013.03.02654

  28. Ihm D, Noh J, Kim J et al (2002) Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery. J Power Sources. 388–393. https://doi.org/10.1016/S0378-7753(02)00097-6109

  29. Weighall MJ (1991) Recent advances in polyethylene separator technology. J Power Sources. 257–268 https://doi.org/10.1016/0378-7753(91)80092-C34

  30. Venugopal G, Moore J, Howard J, Pendalwar S et al (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 34–41. https://doi.org/10.1016/S0378-7753(98)00168-277

  31. Kalnaus S, Wang Y, Turner JA et al (2017) Mechanical behavior and failure mechanisms of Li-ion battery separators. J Power Sources. 255–263. https://doi.org/10.1016/j.jpowsour.2017.03.003348

  32. Cannarella J, Liu X, Leng CZ, Sinko PD, Gor GY, Arnold CB et al (2014) Mechanical properties of a battery separator under compression and tension. J Electrochem Soc F3117-F3122. https://doi.org/10.1149/2.0191411jes161

  33. Love CT (2011) Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators. J Power Sources. 2905–2912. https://doi.org/10.1016/j.jpowsour.2010.10.083196

  34. Xu J, Wang L, Guan J, Yin S et al (2016) Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries. Mater Design. 319–328. https://doi.org/10.1016/j.matdes.2016.01.08295

  35. Sheidaei A, Xiao X, Huang X, Hitt J et al (2011) Mechanical behavior of a battery separator in electrolyte solutions. J Power Sources. 8728–8734. https://doi.org/10.1016/j.jpowsour.2011.06.026196

  36. Gor GY, Cannarella J, Prévost JH, Arnold CB et al (2014) A model for the behavior of battery separators in compression at different Strain/Charge rates. J Electrochem Soc. F3065-F3071. https://doi.org/10.1149/2.0111411jes161

  37. Shi D, Xiao X, Huang X, Kia H et al (2011) Modeling stresses in the separator of a pouch lithium-ion cell. J Power Sources. 8129–8139. https://doi.org/10.1016/j.jpowsour.2011.05.026196

  38. Ali MY, Lai W, Pan J et al (2013) Computational models for simulations of lithium-ion battery cells under constrained compression tests. J Power Sources. 325–340. https://doi.org/10.1016/j.jpowsour.2013.05.022242

  39. Zhu J, Zhang X, Sahraei E, Wierzbicki T et al (2016) Deformation and failure mechanisms of 18650 battery cells under axial compression. J Power Sources 332–340. https://doi.org/10.1016/j.jpowsour.2016.10.064336

  40. Martinez-Cisneros C, Antonelli C, Levenfeld B, Varez A, Sanchez J et al (2016) Evaluation of polyolefin-based macroporous separators for high temperature Li-ion batteries. Electrochim Acta. 68–78. https://doi.org/10.1016/j.electacta.2016.08.105216

  41. Zhang X, Sahraei E, Wang K et al (2016) Deformation and failure characteristics of four types of lithium-ion battery separators. J Power Sources. 693–701. https://doi.org/10.1016/j.jpowsour.2016.07.078327

  42. Lagadec MF, Zahn R, Wood V et al (2018) Designing polyolefin separators to minimize the impact of local compressive stresses on lithium ion battery performance. J Electrochem Soc. A1829-A1836. https://doi.org/10.1149/2.0041809jes165

  43. Ding L, Zhang D, Wu T, Yang F, Lan F, Cao Y, Xiang M et al (2020) The influence of multiple stimulations on the unusual delamination phenomenon of a Li-Ion battery separator prepared by a wet process. Ind Eng Chem Res. 4568–4579. https://doi.org/10.1021/acs.iecr.0c0008959

  44. Hermans PH, Platzek P et al (1939) Beiträge zur Kenntnis des Deformationsmechanismus und der Feinstruktur der Hydratzellulose - IX. Über die theoretische Beziehung zwischen Quellungsanisotropie und Eigendoppelbrechung orientierter Fäden. Colloid Polym Sci. 88: 68–72

  45. Lin Y, Li X, Meng L, Chen X, Lv F, Zhang Q, Zhang R, Li L et al (2018) Structural evolution of Hard-Elastic isotactic polypropylene film during uniaxial tensile deformation: The effect of temperature. Macromolecules. 2690–2705. https://doi.org/10.1021/acs.macromol.8b0025551

  46. Ding L, Ge Q, Xu G, Wu T, Yang F, Xiang M et al (2017) Influence of oriented β-lamellae on deformation and pore formation in β-nucleated polypropylene. Journal of Polymer Science Part B: Polymer Physics. 1745–1759. https://doi.org/10.1002/polb.2442355

  47. Li JX, Cheung WL, Chan CM et al (1999) On deformation mechanisms of β-polypropylene 3. Lamella structures after necking and cold drawing. Polymer. 3641–3656. https://doi.org/10.1016/S0032-3861(98)00578-340 

  48. Wu G, Chen W, Ding C, Xu L, Liu Z, Yang W, Yang M et al (2019) Pore formation mechanism of oriented β polypropylene cast films during stretching and optimization of stretching methods: In-situ SAXS and WAXD studies. Polymer. 86–95. https://doi.org/10.1016/j.polymer.2018.12.051163

  49. Ding L, Zhang C, Wu T, Yang F, Cao Y, Xiang M et al (2020) The compression behavior, microstructure evolution and properties variation of three kinds of commercial battery separators under compression load. J Power Sources. 227819. https://doi.org/10.1016/j.jpowsour.2020.227819451

  50. Ding L, Zhang D, Wu T, Yang F, Lan F, Cao Y, Xiang M et al (2020) Three-dimensional crystal structure evolution and micropore formation of β-iPP during biaxial stretching. Polymer. 122471. https://doi.org/10.1016/j.polymer.2020.122471196

  51. Cannarella J, Arnold CB et al (2015) The effects of defects on localized plating in Lithium-Ion batteries. J Electrochem Soc. A1365-A1373. https://doi.org/10.1149/2.1051507jes162

  52. Zhu X, Jiang X, Ai X, Yang Hand Cao Y et al (2016) TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membrane Sci. 97–103. https://doi.org/10.1016/j.memsci.2015.12.059504

  53. Lin C, Zhang H, Song Y, Zhang Y, Yuan J, Zhu B et al (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem a. 991–998. https://doi.org/10.1039/C7TA08702K6

  54. Oh Y, Jung GY, Kim J, Kim J, Kim SH, Kwak SK, Lee S et al (2016) Janus-Faced, Dual-Conductive/Chemically active battery separator membranes. Adv Funct Mater. 7074–7083. https://doi.org/10.1002/adfm.20160273426

  55. Park S, Jung Y, Shin W, Ahn KH, Lee CH, Kim D et al (2017) Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety. J Membrane Sci. 129–136. https://doi.org/10.1016/j.memsci.2017.01.015527

  56. Zhu C, Zhang J, Xu J, Yin X, Wu J, Chen S, Zhu Z, Wang L, Wang H et al (2019) Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. J Membrane Sci. 117169. https://doi.org/10.1016/j.memsci.2019.117169588

  57. Shi C, Dai J, Huang S, Li C, Shen X, Zhang P, Wu D, Sun D, Zhao J et al (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J Membrane Sci. 168–177. https://doi.org/10.1016/j.memsci.2016.06.046518

  58. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C et al (2019) Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. https://doi.org/10.1038/s41563-019-0431-3

Download references

Acknowledgment

We would like to express our sincere thanks to the Natural Science Foundation of China for Financial Support (51721091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Zhang, D., Zhang, S. et al. Microporous structure and mechanical behavior of separators used for lithium-ion battery. J Polym Res 28, 98 (2021). https://doi.org/10.1007/s10965-020-02358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02358-0

Keywords

Navigation