Skip to main content
Log in

Preparation of a ferroelectric composite film metal–organic framework/PVDF

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

With increasing of the intellectualized electronics devices, new kinds of flexible ferroelectric polymer materials with high dielectric constant attracted more and more attention in recent decades. Polyvinylidene fluoride (PVDF), as one of the most studied ferroelectric polymer materials, has been studied in many published works. Among these works, lots of efforts have been employed to promote the generation of β crystal phase. We here introduced a concise and effective way for large-scale fabrication of promising ferroelectric polymer films by doping a metal–organic framework (MOF) particles via costing process. Then effects of the addition of MOF on the ferroelectric, dielectric and mechanical properties of PVDF composite film were systematic researched. By comparing the results of XRD and FTIR, we found that the addition of MOF changed the α crystal phase of PVDF to β crystal phase which helped improve the ferroelectric and dielectric properties of PVDF composites. The new PVDF composite film, with very low addition (5wt.%) of MOF, possessed the highest remanent polarization (22μC/cm2 at 80MV/m and 1 Hz electric field), and the highest dielectric constant (21 at 10 Hz). The data of mechanical properties indicated that the fine dispersion of MOF maintained the flexibility of PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Z, Stoffel M, Ding L, Rouxel D, Ding Q (2019) J Polym Res 26(12):269

    CAS  Google Scholar 

  2. Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Li G, Cui Y, Wang X, Dang Z, Lei Q (2019) Nano Energy 56:138–150

    CAS  Google Scholar 

  3. Liu G, Zhang T, Feng Y, Zhang Y, Lei Q (2020) Chem Eng J 389:124443

    CAS  Google Scholar 

  4. Bama GK, Devi PI, Ramachandran K (2009) J Mater Sci 44:1302–1307

    Google Scholar 

  5. Zak AK, Gan WC, Majid WHA, Darroudi M, Velayutham TS (2011) Ceram Int 37:1653–1660

    CAS  Google Scholar 

  6. Li Y, Xu H, Ouyang S, Ye J (2016) Phys Chem Chem Phys 18:7563–7572

    CAS  PubMed  Google Scholar 

  7. Guo M, Jiang J, Shen Z, Lin Y, Shen Y (2019) Mater Today 29:49–67

    CAS  Google Scholar 

  8. Feng Y, Zhou Y, Zhang T, Zhang C, Zhang Y, Zhang Y, Chen Q, Chi Q (2020) Energy Storage Mater 25:180–192

    Google Scholar 

  9. Prateek, Thakur VK, Gupta RK (2016) Chem Rev 116(7):4260–4317

    CAS  PubMed  Google Scholar 

  10. Shimizu H, Li Y, Kaito A, Sano H (2006) J Nanosci Nanotechnol 6:3923

    CAS  PubMed  Google Scholar 

  11. Fan H, Peng Y, Li Z, Chen P, Qi J (2013) J Polym Res 20(6):1–15

    Google Scholar 

  12. Shen Y, Hu Y, Chen W, Wang J, Guan Y, Du J, Zhang X, Ma J, Li M, Lin Y (2015) Nano Energy 18:176–186

    CAS  Google Scholar 

  13. Golcuk S, Muftuoglu AE, Celik SU, Bozkurt A (2013) J Polym Res 20(5):144

    Google Scholar 

  14. Lovinger A (1983) Science 220:1115–1121

    CAS  PubMed  Google Scholar 

  15. Chen Y, Xu J, Yu H, Qing C, Zhang Y, Wang L, Liu Y, Wang J (2008) Food Chem 107:169–173

    CAS  Google Scholar 

  16. Moharana S, Mahaling RN (2017) J Appl Polym Sci 135:46002

    Google Scholar 

  17. Thakur P, Kool A, Hoque NA, Bagchi B, Das S (2017) Nano Energy 44:456–467

    Google Scholar 

  18. Ünsal ÖF, Altin Y, Bedeloğlu AÇ (2019) J Appl Polym Sci 173:48517

    Google Scholar 

  19. Zhang S, Tong W, Wang J, Wang W, Zhang Y (2019) J Appl Polym Sci 173:48412

    Google Scholar 

  20. Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Wang X, Lei Q (2019) Nano Energy 66:104195

    CAS  Google Scholar 

  21. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H (2015) Adv Mater 27(42):6658–6663

    CAS  PubMed  Google Scholar 

  22. Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen CR, Wan C (2019) Chem Soc Rev 48(16):4424–4465

    CAS  PubMed  Google Scholar 

  23. Zhang PY, Yang H, Xu ZL, Wei YM (2013) J Polym Res 20(2):1–13

    Google Scholar 

  24. Li Y, Iwakura Y, Shimizu H (2008) J Nanosci Nanotechnol 8:1714–1720

    CAS  PubMed  Google Scholar 

  25. Tawansi A, Oraby A, Badr S, Elashmawi I (2004) Polym Int 53:370–377

    CAS  Google Scholar 

  26. Cai X, Lei T, Sun D, Lin L (2017) RSC Adv 7(25):15382–15389

    CAS  Google Scholar 

  27. Zhou W, Chen Q, Sui X, Dong L, Wang Z (2015) Compos Pt A 71:184–191

    CAS  Google Scholar 

  28. Batra AK, Edwards ME, Guggilla P, Aggarwal MD, Lal RB (2014) Integr Ferroelectr 158:98–107

    CAS  Google Scholar 

  29. Gaur MS, Indolia AP (2011) J Therm Anal Calorim 103:977–985

    CAS  Google Scholar 

  30. Meyers FN, Loh KJ, Dodds JS, Baltazar A (2013) Nanotechnology 24:185501

    PubMed  Google Scholar 

  31. Zhou T, Zha JW, Cui RY, Fan BH, Dang ZM (2011) ACS Appl Mater Interfaces 3:2184–2188

    CAS  PubMed  Google Scholar 

  32. Dang ZM, Zha JW, Yu Y, Zhou T, Song HT, Li ST (2011) IEEE Trans Dielectr Electr Insul 18:1518–1625

    CAS  Google Scholar 

  33. Seol JH, Lee JS, Ji H, Ok Y, Kong GP, Kim K, Kim CY, Tai W (2012) Ceram Int 38 (supp-S1):S263–S266

    Google Scholar 

  34. Chi HL, Lu X, Tan CF, Chan KH, Ho GW (2017) Small 14:1702268

    Google Scholar 

  35. Wanke, Cesar H, Bianchi, Otavio, Martins, Johnny N, Oliveira, Ricardo VB, Castel D, Charles (2015). J Polym Res

  36. Konnerth H, Matsagar BM, Chen SS, Prechtl MHG, Shieh F-K, Wu KCW (2020) Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord Chem Rev 416:213319

    CAS  Google Scholar 

  37. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T III (2014) Chem Soc Rev 43:5561–5593

    CAS  PubMed  Google Scholar 

  38. Shimizu HGK (2010) Nat Chem 2:909–911

    CAS  PubMed  Google Scholar 

  39. Chueh C-C, Chen C-I, Su Y-A, Konnerth H, Gu Y-J, Kung C-W, Wu KCW (2019) Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J Mate Chem A 7(29):17079–17095

    CAS  Google Scholar 

  40. Rosseinsky JM (2010) Nat Mater 9:609–610

    CAS  PubMed  Google Scholar 

  41. Vieth JK, Janiak C (2010) Chem Informationsdienst 34:2366–2388

    Google Scholar 

  42. Lee C-C, Chen C-I, Liao Y-T, Wu KCW, Chueh C-C (2019) Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr-MOF Heterojunction Including Bilayer and Hybrid Structures. Adv Sci 6(5):1801715

    Google Scholar 

  43. Ke F, Qiu LG, Zhu J (2014) Nanoscale 6:1596–1601

    CAS  PubMed  Google Scholar 

  44. Liao Y-T, Matsagar BM, Wu KCW (2018) Metal-Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustain Chem Eng 6(11):13628–13643

    CAS  Google Scholar 

  45. Wang Z, Sezen H, Liu J, Yang C, Roggenbuck SE, Peikert K, Frba M, Mavrandonakis A, Supronowicz B, Heine T (2015) Microporous Mesoporous Mater 207:53–60

    CAS  Google Scholar 

  46. Amedi HR, Aghajani MJJoAPS (2018) J Appl Polym Sci 135:44849

    Google Scholar 

  47. Liao Y-T, Nguyen VC, Ishiguro N, Young AP, Tsung C-K, Wu KCW (2020) Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Appl Catal B 270:118805

    CAS  Google Scholar 

  48. Huang X, Sun B, Zhu Y, Li S, Jiang P (2018) Prog Mater Sci 100:187–225

    Google Scholar 

  49. Mark, Kalaj SM, Denny CK, Bentz MJ (2019) Angew Chem 131:2358–2362

    Google Scholar 

  50. Hv S, Fedosov SN (2008) Interrelation between pyroelectricity, polarization and charge in PVDF. In: (2008) 13th International Symposium on Electrets, 15–17. Sept 2008:B0602–B0602

  51. Chen X-Z, Cheng Z-X, Liu L, Yang X-D, Shen Q-D, Hu W-B, Li H-T (2013) Evolution of nanopolar phases, interfaces, and increased dielectric energy storage capacity in photoinitiated cross-linked poly(vinylidene fluoride)-based copolymers. Colloid Polym Sci 291(8):1989–1997

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC 51873114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufu Cai.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Yang, Y. & Cai, X. Preparation of a ferroelectric composite film metal–organic framework/PVDF. J Polym Res 27, 377 (2020). https://doi.org/10.1007/s10965-020-02349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02349-1

Keywords

Navigation