Skip to main content
Log in

Urea entrapment in cellulose acetate microparticles obtained by electrospraying

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Urea is a widely used source of nitrogen, but its rapid solubilization in water leads to significant wastage on application. Thus, the quest for an efficient and economical polymeric matrix able to encapsulated urea is a long-standing challenge. In this paper, we present a simple and economical method for urea entrapment in cellulose acetate (CA) microparticles produced by the electrospraying process. The morphology and diameter of the microparticles were optimized experimentally by evaluating the solvent composition (binary mixture) and polymer concentration. The electrospraying process parameters, such as particle collection distance, applied voltage and flow rate, were also evaluated. The particle diameter was determined by scanning electron microscopy (SEM) and the CA microparticle characteristics, urea incorporation and in vitro release profile were determined by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The morphological characteristics (shape and porosity) of the CA microparticles were affected by the diffusion rate and CA solubility due to solvent evaporation in the electrospraying process. The SEM images showed monodispersed and spherical CA microparticles with a diameter size of 2.2 ± 0.3 µm. The FTIR spectra and SEM images verified the urea entrapment in the CA microparticles (100 mg/g), and the particle morphology did not appear to be affected. The release of urea from the CA microparticles showed a maximum of 79% after 7 h, which is a significant difference in relation to in vitro urea release. The results obtained using the electrospray technology represent a step forward in the search to improve the incorporation of urea into CA microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Backac, A (2010) Physical inorganic chemistry: reactions, processes and applications. Willey 2010

  2. Zhang S, Cheng L, Guo X, Ma C, Guo A, Moonsan Y (2016) Effects of urea supplementation on rumen fermentation characteristics and protozoa population in vitro. J Appl Anim Res 44:1–4

    Google Scholar 

  3. Koli, P, Bhardwaj, NR and Mahawer, SK (2019) Agrochemicals: Harmful and Beneficial Effects of Climate Changing Scenarios. Clim Chang Agri Ecosyst, 65–94

  4. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber H, Nykvist B, Wit DE, CA, Hughes T, Van Der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J, (2009) A safe operating space for humanity. Nature 461:472–475

    PubMed  Google Scholar 

  5. Alcarde JC, Guidolin JÁ, Lopes A (1998) Os adubos e a eficiência das adubações, 3rd edn. ANDA, São Paulo

    Google Scholar 

  6. Sempeho SI, Kim HT, Mubofu E, Hilonga A (2014) Meticulous Overview on the Controlled Release Fertilizers. Adv Chem 2014:1–16

    Google Scholar 

  7. Wang W, Zhang MJ, Chu LY (2014) Functional Polymeric Microparticles Engineered from Controllable Microfluidic Emulsions. Acc Chem Res 47:373–384

    CAS  PubMed  Google Scholar 

  8. Liu ZP, Zhang YY, Yu DG, Wu D, Li HL (2018) Fabrication of sustained release zein nanoparticles via modified coaxial electrospraying. Chem Eng J 334:807–816

    CAS  Google Scholar 

  9. Liang Y, Wu D, Fu R (2013) Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer. Sci Rep 3:1119

    PubMed  PubMed Central  Google Scholar 

  10. Park CH, Lee J (2009) Electrosprayed Polymer Particles: Effect of the Solvent Properties. J Appl Polym Sci 114:430–437

    CAS  Google Scholar 

  11. De Marco I, Prosapio V, Cice F, Reverchon E (2013) Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: Cellulose acetate microparticles. J Supercrit Fluid 83:153–160

    Google Scholar 

  12. Smeets A, Clasen C, Van den Mooter G (2017) Electrospraying of polymer solutions: Study of formulation and process parameters. Eur J Pharm Biopharm 119:114–124

    CAS  PubMed  Google Scholar 

  13. Nair SS, Mathew AP (2017) Porous composite membranes based on cellulose acetate and cellulose nanocrystals via electrospinning and electrospraying. Carbohydr Polym 175:149–157

    CAS  Google Scholar 

  14. Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J, Wu R, Huang Y (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr Polym 83:743–748

    CAS  Google Scholar 

  15. Tungprapa S, Jangchud I, Supaphol P (2007) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48:5030–5041

    CAS  Google Scholar 

  16. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B, Dorkoosh FA, Haghpanah V, Khorramizadeh MR (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr Polym 198:131–141

    CAS  PubMed  Google Scholar 

  17. Desai KGH, Park HJ (2005) Recent Developments in Microencapsulation of Food Ingredients. Dry Technol 23:1361–1394

    CAS  Google Scholar 

  18. Pecora R (2000) Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2:123–131

    CAS  Google Scholar 

  19. Smallwood IM (1996) Handbook of organic solvent properties. John Willey & Sons Inc, New York

    Google Scholar 

  20. Hallett CJ, Cook JGH (1971) Reduced nicotinamide adenine dinucleotide-coupled reaction for emergency blood urea estimation. Clin Chim Acta 35:33–37

    CAS  PubMed  Google Scholar 

  21. Pawar A, Thakkar S, Misra M (2018) A bird’s eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. J Controlled Release 286:179–200

    CAS  Google Scholar 

  22. Jaworek A, Sobczyk AT, Krupa A (2018) Electrospray application to powder production and surface coating. J Aerosol Sci 125:57–92

    CAS  Google Scholar 

  23. Haider A, Haider S, KyuKang I (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    CAS  Google Scholar 

  24. Baldelli A, Boraey MA, Nobes DS, Vehring R (2015) Analysis of the Particle Formation Process of Structured Microparticles. Mol Pharmaceutics 12:2562–2573

    CAS  Google Scholar 

  25. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. 2nd edn, CRC Press.

  26. Bae HS, Haider A, Selim KMK, Kang DY, Kim EJ, Kang IK (2013) Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res 20:158

    Google Scholar 

  27. Yao J, Lim LK, Xie J, Hua J, Wang CH (2008) Characterization of electrospraying process for polymeric particle fabrication. Aerosol Sci 39:987–1002

    CAS  Google Scholar 

  28. Haas D, Heinrich S, Greil P (2010) Solvent control of cellulose acetate nanofibre felt structure produced by electrospinning. J Mater Sci 45:1299–1306

    CAS  Google Scholar 

  29. Bodnár E, Grifoll J, Rosell-Llompart J (2018) Polymer solution electrospraying: A tool for engineering particles and films with controlled morphology. J Aerosol Sci 125:93–118

    Google Scholar 

  30. Guptaa P, Elkinsb C, Longb TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810

    Google Scholar 

  31. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46(2005):3372–3384

    CAS  Google Scholar 

  32. Francus P, Pirard E (2004) Testing for sources of errors in quantitative image analysis. In: Francus P (ed) Image Analysis, Sediments and Paleoenvironments. Kluwer Academic Publishers, Dordrecht, pp 87–102

    Google Scholar 

  33. Lira C, Pina P (2011) Granulometry on classified images of sand grains. J Coastal Res 64:1697–1701

    Google Scholar 

  34. Guilherme PDB, Borzone CA, Bueno ML, Lamour MR (2015) Análise granulométrica de sedimentos arenosos de praias através de imagens digitais. Descrição de um protocolo de mensuração de partículas no software ImageJ – Fiji. Braz J Aquat Sci Technol 19:23–32

    Google Scholar 

  35. Altmann K, Schulze RD, Friedrich J (2014) Polymer deposition morphology by electrospray deposition - Modifications through distance variation. Thin Solid Films 564:269–276

    CAS  Google Scholar 

  36. Marginean I, Kelly RT, Page JS, Tang K, Smith RD (2009) Electrospray characteristic curves: in pursuit of improved performance in the nano-flow regime. Anal Chem 79:8030–8036

    Google Scholar 

  37. Ibrahim MM, Fahmy TYA, Salaheldin EI, Mobarak F, Youssef MA, Mabrook MR (2015) Role of Tosyl Cellulose Acetate as Potential Carrier for Controlled Drug Release. Life Sci J 12:127–133

    CAS  Google Scholar 

  38. Murphy D, Pinho MN (1995) An ATR-FTIR study of water in cellulose acetate membranes prepared by phase inversion. J Membr Sci 106:245–257

    CAS  Google Scholar 

  39. Kamide K, Saito M (1985) Thermal Analysis of Cellulose Acetate Solids with Total Degrees of Substitution of 0.49, 1.75, 2.46, and 2.92. Polym J 17:919–928

    CAS  Google Scholar 

  40. Gañán-Calvo AM (1999) The Surface Charge in Electrospraying: Its Nature and Its Universal Scaling Laws. J Aerosol Sci 30:863–872

    Google Scholar 

  41. Xu F, Weng B, Materon LA, Kuang A, Trujillo JA, Lozano K (2015) Fabrication of cellulose fine fiber-based membranes embedded with silver nanoparticles via Forcespinning. J Polym Eng 36:269–278

    Google Scholar 

  42. Ben EF, Suardi M, Suharti N, Rahmadani F, Oktavia VS, Dewi AP, Arief S, Lalfari RS, Djamaan A (2017) Slow Release Fertilizer: Production of Urea Microcapsules using Polycaprolactone as a Coating Material. J Chem Pharm Res 9:81–86

    CAS  Google Scholar 

  43. Haddadi A, Aboofazeli R, Erfan M, Farboud ES (2008) Topical delivery of urea encapsulated in biodegradable PLGA microparticles: O/W and W/O creams. J Microencapsul 25:379–386

    CAS  PubMed  Google Scholar 

  44. Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Arachchige DMB, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GAJ (2017) Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen. ACS Nano 11:1214–2122

    CAS  PubMed  Google Scholar 

  45. Hussain MR, Devi RR, Maji TK (2012) Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J 21:473–479

    CAS  Google Scholar 

  46. Koester LS, Ortega GG, Mayorga P, Bassani VL (2004) Mathematical evaluation of in vitro release profiles of hydroxypropylmethylcellulose matrix tablets containing carbamazepine associated to β-cyclodextrin. Eur J Pharm Biopharm 58:177–179

    CAS  PubMed  Google Scholar 

  47. Hoffman A, Donbrow M, Benita S (1986) Direct measurements on individual microcapsule dissolution as a tool for determination of release mechanism. J Pharm Pharmacol 38:764–766

    CAS  PubMed  Google Scholar 

  48. Gary-Bobo CM, Solomon AK (1971) Effect of Geometrical and Chemical Constraints on Water Flux across Artificial Membranes. The Journal of General Physiology 57:610–622

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Levitt DG (1973a) Kinetics of Diffusion and Convection in 3.2Å Pores. Biophys J 13:186–206

    PubMed  PubMed Central  Google Scholar 

  50. Volkov VI, Korotchkova SA, Nesterov IA, Ohya H, Guo Q, Huang J, Chen J (1996) The self-diffusion of water and ethanol in cellulose derivative membranes and particles with the pulsed field gradient NMR data. J Membr Sci 110:1–11

    CAS  Google Scholar 

  51. Levitt DG (1973b) Kinetics of diffusion and convection in 3.2-Å pores. Biophys J 13:186–206

    PubMed  PubMed Central  Google Scholar 

  52. Lonsdale HK, Merten U, Riley RL (1965) Transport Properties of Cellulose Acetate Osmotic Membranes. J Appl Polym Sci 9:1341–1362

    CAS  Google Scholar 

  53. Zhou X, Lin X, White KL, Lin S, Wu H, Cao S, Huang L, Chen L (2016) Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 23:811–821

    CAS  Google Scholar 

Download references

Acknowledgements

Universidade Federal de Santa Catarina (UFSC), Universidade Federal do Amazonas (UFAM), CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanderlei Luis Sitta Severgnini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.93 MB)

Supplementary file2 (TIF 1.25 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severgnini, V.L.S., Rengifo, A.F.C., Debacher, N.A. et al. Urea entrapment in cellulose acetate microparticles obtained by electrospraying. J Polym Res 27, 378 (2020). https://doi.org/10.1007/s10965-020-02344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02344-6

Keywords

Navigation