Skip to main content
Log in

The effect of microspheres surface morphology on the enhanced microwave absorbing properties of MWCNTs

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polystyrene (PS) microspheres with special morphology of bowl-shaped were synthesized by simple dispersion polymerization. The SEM results showed that the diameter of bowl cavity is about 1.4 μm, and many small cavities appeared at the reverse side of the bowl cavity. The absorber hybrids of bowl-shaped PS@MWCNTs were constructed using bowl-shaped PS microspheres with multi-walled carbon nanotubes (MWCNTs) via π-π stacking effect, and the absorbing performance were investigated. Compared with PS@MWCNTs hybrids, the bowl-shaped PS@MWCNTs hybrids demonstrate excellent absorbing performance, the reflection loss(RL) is -34.92 dB at 13.01 GHz in thickness of 2.0 mm, while the reflection loss(RL) of PS@MWCNTs is -22.42 dB. When the thickness of bowl-shaped PS@MWCNTs hybrids is 2.8 mm, the reflection loss(RL) can reach -38.57 dB, and the effective absorption bandwidth (RL ≤ -10 dB) is as high as 4.81 GHz (6.45–11.26 GHz). The results indicated that the existence of bowl cavity structure is vital to the energy attenuation of incident electromagnetic wave due to the enhancement of impedance matching, electromagnetic wave transmission path and multiple reflection in the interior of absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cheng Y, Li Z, Li Y, Dai S, Ji G, Zhao H, Cao J, Du Y (2018) Rationally Regulating Complex Dielectric Parameters of Mesoporous Carbon Hollow Spheres to Carry out Efficient Microwave Absorption. Carbon 127:643–652

    Article  CAS  Google Scholar 

  2. Lv L, Liu J, Liu H, Liu C, Lu Y, Sun K, Fan R, Wang N, Lu N, Guo Z (2018) An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. Eng Sci 2:26–42

    Google Scholar 

  3. Zhang H, Wang B, Feng A, Zhang N, Jia Z, Huang Z, Liu X, Wu G (2019) Mesoporous Carbon Hollow Microspheres with Tunable Pore Size and Shell Thickness as Efficient Electromagnetic Wave Absorbers. Compos Part B-Eng 167:690–699

    Article  CAS  Google Scholar 

  4. Kuang J, Hou X, Xiao T, Li Y, Wang Q, Jiang P, Cao W (2019) Three- Dimensional Carbon Nanotube/SiC Nanowire Composite Network Structure for High-Efficiency Electromagnetic Wave Absorption. Ceram Int 45(5):6263–6267

    Article  CAS  Google Scholar 

  5. Xie P, Li H, He B, Dang F, Lin J, Fan R, Hou C, Liu H, Zhang J, Ma Y (2018) Bio-Gel Derived Nickel/Carbon Nanocomposites with Enhanced Microwave Absorption. J Mater Chem C 6(32):8812–8822

    Article  CAS  Google Scholar 

  6. Luo C, Jiao T, Tang Y, Kong J (2018) Excellent Electromagnetic Wave Absorption of Iron-Containing SiBCN Ceramics at 1158 K High-Temperature. Adv Eng Mater 20(6):1701168

    Article  Google Scholar 

  7. Shu R, Li W, Wu Y, Zhang J, Zhang G (2019) Nitrogen-Doped Co-C/MWCNTs Nanocomposites Derived from Bimetallic Metal-Organic Frameworks for Electromagnetic Wave Absorption in the X-Band. Chem Eng J 362:513–524

    Article  CAS  Google Scholar 

  8. Wang C, Murugadoss V, Kong J, He Z, Mai X, Shao Q, Chen Y, Guo L, Liu C, Angaiah S (2018) Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding. Carbon 140:696–733

    Article  CAS  Google Scholar 

  9. Kong L, Wang C, Yin X, Fan X, Wang W, Huang J (2017) Electromagnetic Wave Absorption Properties of CNTs Modified by a Tetrapyridinoporphyrazine Interface Layer. J Mater Chem C 5(30):7479–7488

    Article  CAS  Google Scholar 

  10. El Moumen A, Tarfaoui M, Nachtane M, Lafdi K (2019) Carbon Nanotubes as a Player to Improve Mechanical Shock Wave Absorption. Compos Part B-Eng 164:67–71

    Article  Google Scholar 

  11. Kong L, Yin X, Xu H, Yuan X, Wang T, Xu Z, Huang J, Yang R, Fan H (2019) Powerful Absorbing and Lightweight Electromagnetic Shielding CNTs/RGO Composite. Carbon 145:61–66

    Article  CAS  Google Scholar 

  12. Ting T, Jau Y, Yu R (2012) Microwave Absorbing Properties of Polyaniline/MWCNTs Composites with Various Polyaniline Contents. Appl Surf Sci 258(7):3184–3190

    Article  CAS  Google Scholar 

  13. Qing Y, Wang X, Zhou Y, Huang Z, Luo F, Zhou W (2014) Enhanced Microwave Absorption of Multi-Walled Carbon Nanotubes/Epoxy Composites Incorporated with Ceramic Particles. Compos Sci Technol 102:161–168

    Article  CAS  Google Scholar 

  14. Pande S, Chaudhary A, Patel D, Singh BP, Mathur RB (2014) Mechanical and Electrical Properties of Multiwall Carbon Nanotube/Polycarbonate Composites for Electrostatic Discharge and Electromagnetic Interference Shielding Applications. RSC Adv 4(27):13839–13849

    Article  CAS  Google Scholar 

  15. Cao M-S, Yang J, Song W-L, Zhang D-Q, Wen B, Jin H-B, Hou Z-L, Yuan J (2012) Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption. ACS Appl Mater Interfaces 4(12):6949–6956

    Article  CAS  Google Scholar 

  16. Zhong B, Cheng Y, Wang M, Bai Y, Huang X, Yu Y, Wang H, Wen G (2018) Three Dimensional Hexagonal Boron Nitride Nanosheet/Carbon Nanotube Composites with Light Weight and Enhanced Microwave Absorption Performance. Compos Part A-Appl Sci Manuf 112:515–524

    Article  CAS  Google Scholar 

  17. Yun S, Kirakosyan A, Surabhi S, Jeong J-R, Choi J (2017) Controlled Morphology of MWCNTs Driven by Polymer-Grafted nanoparticles for Enhanced Microwave Absorption. J Mater Chem C 5(33):8436–8443

    Article  CAS  Google Scholar 

  18. Shen H, Du X, Ren X, Xie Y, Sheng X, Zhang X (2017) Morphology Control of Anisotropic Nonspherical Functional Polymeric Particles by One-Pot Dispersion Polymerization. React Funct Polym 112:53–59

    Article  CAS  Google Scholar 

  19. Liu X, Nie X, Yu R, Feng H (2018) Design of Dual-Frequency Electromagnetic Wave Absorption by Interface Modulation Strategy. Chem Eng J 334:153–161

    Article  CAS  Google Scholar 

  20. Kuang J, Xiao T, Hou X, Zheng Q, Wang Q, Jiang P, Cao W (2019) Microwave Synthesis of Worm-Like SiC Nanowires for Thin Electromagnetic Wave Absorbing Materials. Ceram Int 45(9):11660–11667

    Article  CAS  Google Scholar 

  21. Pak SY, Kim HM, Kim SY, Youn JR (2012) Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-Walled Carbon Nanotube Fillers. Carbon 50(13):4830–4838

    Article  CAS  Google Scholar 

  22. Bokobza L, Zhang J (2012) Raman Spectroscopic Characterization of Multiwall Carbon Nanotubes and of Composites. Express Polym Lett 6(7):601–608

    Article  CAS  Google Scholar 

  23. Tuinstra F, Koenig J (1970) Characterization of Graphite Fiber Surfaces with Raman Spectroscopy. J Compos Mater 4(4):492–499

    Article  CAS  Google Scholar 

  24. Qing Y, Zhou W, Luo F, Zhu D (2016) Titanium Carbide (MXene) Nanosheets as Promising Microwave Absorbers. Ceram Int 42(14):16412–16416

    Article  CAS  Google Scholar 

  25. You W, She W, Liu Z, Bi H, Che R (2017) High-Temperature Annealing of an Iron Microplate with Excellent Microwave Absorption Performance and Its Direct Micromagnetic Analysis by Electron Holography and Lorentz Microscopy. J Mater Chem C 5(24):6047–6053

    Article  CAS  Google Scholar 

  26. Zlotorzynski A (1995) The Application of Microwave Radiation to Analytical and Environmental Chemistry. Crit Rev Anal Chem 25(1):43–76

    Article  CAS  Google Scholar 

  27. Bagheri M, Phung B, Blackburn T (2014) Influence of Temperature and Moisture Content on Frequency Response Analysis of Transformer Winding. IEEE T Dielect El In 21(3):1393–1404

    Article  Google Scholar 

  28. Tian C, Du Y, Xu P, Qiang R, Wang Y, Ding D, Xue J, Ma J, Zhao H, Han X (2015) Constructing Uniform Core-Shell PPy@ PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption. ACS Appl Mater Interfaces 7(36):20090–20099

    Article  CAS  Google Scholar 

  29. Quan B, Liang X, Ji G, Ma J, Ouyang P, Gong H, Xu G, Du Y (2017) Strong Electromagnetic Wave Response Derived from the Construction of Dielectric/Magnetic Media Heterostructure and Multiple Interfaces. ACS Appl Mater Interfaces 9(11):9964–9974

    Article  CAS  Google Scholar 

  30. Chuai D, Liu X, Yu R, Ye J, Shi Y (2016) Enhanced Microwave Absorption Properties of Flake-Shaped FePCB Metallic Glass/Graphene Composites. Compos Part A-Appl Sci Manuf 89:33–39

    Article  CAS  Google Scholar 

  31. Zhang X, Ji G, Liu W, Zhang X, Gao Q, Li Y, Du Y (2016) A Novel Co/TiO2 Nnocomposite Derived from A Metal-Organic Framework: Synthesis and Efficient Microwave Absorption. J Mater Chem C 4:1860–1870

    Article  CAS  Google Scholar 

  32. Shu R, Li W, Zhou X, Tian D, Zhang G, Gan Y, Shi J, He J (2018) Facile Preparation and Microwave Absorption Properties of RGO/MWCNTs/ZnFe2O4 Hybrid Nanocomposites. J Alloys Compd 743:163–174

    Article  CAS  Google Scholar 

  33. Zhang N, Huang Y, Wang M, Liu X, Zong M (2019) Design and Microwave Absorption Properties of Thistle-like CoNi Enveloped in Dielectric Ag Decorated Graphene Composites. J colloid Interf Sci 534:110–121

    Article  CAS  Google Scholar 

  34. Qing Y, Min D, Zhou Y, Luo F, Zhou W (2015) Graphene Nanosheet-and Flake Carbonyl Iron Particle-Filled Epoxy-Silicone Composites as Thin-hickness and Wide-Bandwidth Microwave Absorber. Carbon 86:98–107

    Article  CAS  Google Scholar 

  35. Yu L, Zhu Y, Fu Y (2018) Waxberry-Like Carbon@ Polyaniline Microspheres with High-Performance Microwave Absorption. Appl Surf Sci 427:451–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support of National Natural Science Foundation of China (No.51373136) and the Innovation Foundation for Doctor Dissertation of NPU (CX201964). Thanks for the help of analytical & testing center of NPU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aibo Zhang or Jie Kong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Wang, D., Li, Y. et al. The effect of microspheres surface morphology on the enhanced microwave absorbing properties of MWCNTs. J Polym Res 28, 91 (2021). https://doi.org/10.1007/s10965-020-02303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02303-1

Keywords

Navigation