Skip to main content

Advertisement

Log in

Impact of light-cure protocols on the porosity and shrinkage of commercial bulk fill dental resin composites with different flowability

  • SHORT COMMUNICATION
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This research aimed to probe the degree of conversion (DoC), porosity and polymerization shrinkage strain (PSS) from three different commercial bulk fill resin composites (BFRCs) with different flowability submitted to two different irradiation protocols. Samples (n = 3) of Tetric N-Ceram (TNF), Opus Bulk Fill (OBF) and Filltek Bulk Fill Flow (FBFF) were studied by FT-IR (for DoC) and micro-CT (for porosity and PSS analysis) after submitted to the following light-cure protocols: P1 (1000 mW/cm2 for 20 s) and P2 (3200 mW/cm2 for 6 s). All data were statistically treated. The material’s viscosity interfered on its porosity, as well as in the response to the irradiation protocol. Furthermore, data showed that the greater the polymerization shrinkage strain the lower the porosity. On the other hand, the lower the DoC the greater the polymerization shrinkage strain. We conclude that samples of high viscosity composites submitted to extended curing time with lower irradiation showed best physical characteristics for clinical use. The low viscosity FBFF and high power light-cure protocol should be used carefully since it presented the poorest results, which may result in undesirable clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alshali RZ, Salim NA, Satterthwaite JD, Silikas N (2014) ScienceDirect Post-irradiation hardness development , chemical softening , and thermal stability of bulk-fill and conventional resin-composites. J Dent 43:209–218. https://doi.org/10.1016/j.jdent.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  2. Ilie N, Stark K (2014) Effect of different curing protocols on the mechanical properties of low-viscosity bulk-fill composites. Clin Oral Investig 19:271–279. https://doi.org/10.1007/s00784-014-1262-x

    Article  PubMed  Google Scholar 

  3. Kim E-H, Jung K-H, Son S-A, Hur B, Kwon Y-H, Park J-K (2015a) Effect of resin thickness on the microhardness and optical properties of bulk-fill resin composites. Restor Dent Endod 40:128–135. https://doi.org/10.5395/rde.2015.40.2.128

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim RJ, Kim Y, Choi N, Lee I (2015b) Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent 43:430–439. https://doi.org/10.1016/j.jdent.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  5. Corral Núñez C, Vildósola Grez P, Bersezio Miranda C, Alves Dos Campos E, Fernández Godoy E (2015) Revisión del estado actual de resinas compuestas bulk-fill. Rev Fac Odontol. https://doi.org/10.17533/udea.rfo.v27n1a9

  6. Costa E (2018) A comparative study of bulk-fill composites : degree of conversion , post-gel shrinkage and cytotoxicity 32:1–9

  7. Flury S, Peutzfeldt A, Lussi A (2014) Influence of increment thickness on microhardness and dentin bond strength of bulk fill resin composites. Dent Mater 30:1104–1112. https://doi.org/10.1016/j.dental.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Garoushi S, Säilynoja E, Vallittu PK, Lassila L (2013) Physical properties and depth of cure of a new short fiber. Dent Mater 29:835–841. https://doi.org/10.1016/j.dental.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  9. Hirata R, Clozza E, Giannini M, Farrokhmanesh E, Janal M, Tovar N, Bonfante EA, Coelho PG (2015) Shrinkage assessment of low shrinkage composites using micro-computed tomography. J Biomed Mater Res B Appl Biomater 103:798–806. https://doi.org/10.1002/jbm.b.33258

    Article  CAS  PubMed  Google Scholar 

  10. Al H, Silikas N, Watts DC (2016) Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater 32:998–1006. https://doi.org/10.1016/j.dental.2016.05.006

    Article  CAS  Google Scholar 

  11. Platt HMEJA 2014. Polymerization Shrinkage Stress Kinetics and Related Properties of Bulk-fill Resin Composites 374-382 https://doi.org/10.2341/13-017-L

  12. Tauböck TT, Jäger F, Attin T (2019) Polymerization shrinkage and shrinkage force kinetics of high- and low-viscosity dimethacrylate- and ormocer-based bulk-fill resin composites. Odontology 107:103–110. https://doi.org/10.1007/s10266-018-0369-y

    Article  CAS  PubMed  Google Scholar 

  13. Kleverlaan CJ, Feilzer AJ (2005) Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater 21:1150–1157. https://doi.org/10.1016/j.dental.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  14. Hiramatsu DA, Moretti-Neto RT, Ferraz BFR, Porto VC, Rubo JH (2011) Roughness and porosity of provisional crowns. RPG Revista de Pós-Graduação 18(2):108–112

    Google Scholar 

  15. Quirynen M, Bollen CML (1995) The influence of surface roughness and surface-free energy on supra-and subgingival plaque formation in man: a review of the literature. J Clin Periodontol 22(1):1–14. https://doi.org/10.1111/j.1600-051X.1995.tb01765.x

    Article  CAS  PubMed  Google Scholar 

  16. Barralet JE, Gaunt T, Wright AJ, Gibson IR, Knowles JC (2002) Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J Biomed Mater Res: Off J Soc Biomater Japanese Soc Biomater Australian Soc Biomater Korean Soc Biomater 63(1):1–9. https://doi.org/10.1002/jbm.1074

    Article  CAS  Google Scholar 

  17. Fano V, Ortalli I, Pozela K (1995) Porosity in composite resins. Biomaterials 16:1291–1295. https://doi.org/10.1016/0142-9612(95)91043-X

    Article  CAS  PubMed  Google Scholar 

  18. Malkoç MA, Sevimay M, Tatar İ, Çelik HH (2015) Micro-CT detection and characterization of porosity in luting cements. J Prosthodont 24(7):553–561. https://doi.org/10.1111/jopr.12251

    Article  PubMed  Google Scholar 

  19. Burey A, dos Reis PJ, Santana Vicentin BL, Dezan Garbelini CC, Grama Hoeppner M, Appoloni CR (2018) Polymerization shrinkage and porosity profile of dual cure dental resin cements with different adhesion to dentin mechanisms. Microsc Res Tech 81(1):88–96. https://doi.org/10.1002/jemt.22960

    Article  CAS  PubMed  Google Scholar 

  20. Gheller R, Burey A, Vicentin BLS, dos Reis PJ, Appoloni CR, Garbelini CCD, Hoeppner MG (2020) Microporosity and polymerization contraction as function of depth in dental resin cements by X-ray computed microtomography. Microsc Res Tech 83(6):658–666. https://doi.org/10.1002/jemt.23456

    Article  CAS  PubMed  Google Scholar 

  21. Soares CJ, Rosatto CMP, Carvalho VF, Bicalho AA, Henriques JCG, Faria-e-Silva AL (2017) Radiopacity and porosity of bulk-fill and conventional composite posterior restorations-digital X-ray analysis. Oper Dent 42:616–625. https://doi.org/10.2341/16-146-L

    Article  CAS  PubMed  Google Scholar 

  22. Sun J, Lin-Gibson S (2008) X-ray microcomputed tomography for measuring polymerization shrinkage of polymeric dental composites. Dent Mater 24:228–234. https://doi.org/10.1016/j.dental.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  23. Sun J, Eidelman N, Lin-gibson S (2009) 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage. Dent Mater 25:314–320. https://doi.org/10.1016/j.dental.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  24. Pfeifer CS, Shelton ZR, Braga RR, Windmoller D, Machado JC, Stansbury JW (2011) Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites. Eur Polym J 47(2):162–170. https://doi.org/10.1016/j.eurpolymj.2010.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moraes LGP, Rocha RSF, Menegazzo LM, de Araújo EB, Yukimito K, Moraes JCS (2008) Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci 16:145–149. https://doi.org/10.1590/S1678-77572008000200012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fatima N (2014) Influence of extended light exposure curing times on the degree of conversion of resin-based pit and fissure sealant materials. Saudi Dent J 26:151–155. https://doi.org/10.1016/j.sdentj.2014.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  27. FGM 2017 Advanced Polymerization System. FGM News:92–93

  28. Par M, Gamulin O, Marovic D, Klaric E, Tarle Z (2014) Effect of temperature on post-cure polymerization of bulk-fill composites. J Dent 42:1255–1260. https://doi.org/10.1016/j.jdent.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  29. Alshali RZ, Silikas N, Satterthwaite JD (2013) Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater 29:e213–e217. https://doi.org/10.1016/j.dental.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  30. Civelek A, Ersoy M, L’Hotelier E, Soyman M, Say E (2003) Polymerization shrinkage and microleakage in class II cavities of V arious resin composite. Oper Dent 28:477–664

    Google Scholar 

  31. Auj PY, Xy Y (2017) Degree of conversion and polymerization shrinkage of bulk- fill resin-based composites. Oper Dent 42:82–89. https://doi.org/10.2341/16-027-L

    Article  Google Scholar 

  32. Nascimento AS, Lima DB, Fook MVL, de Albuquerque MS, de Lima EA, Sabino MA, Borges SMP, Filgueira PTD, de Sousa YC, Braz R (2018) Physicomechanical characterization and biological evaluation of bulk-fill composite resin. Braz. Oral Res. 32:1–14. https://doi.org/10.1590/1807-3107BOR-2018.VOL32.0107

    Article  Google Scholar 

  33. Al Sunbul H, Silikas N, Watts DC (2016) Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater 32:998–1006. https://doi.org/10.1016/j.dental.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  34. Versluis A, Tantbirojn D 1999 Theoretical considerations of contraction stress. Compend. Contin. Educ Dent Suppl S24-32; quiz S73

  35. Asmussen E, Peutzfeldt A (1999) Direction of shrinkage of light-curing resin composites. Acta Odontol Scand 57:310–315. https://doi.org/10.1080/000163599428535

    Article  CAS  PubMed  Google Scholar 

  36. Barszczewska-Rybarek IM (2019) A guide through the dental Dimethacrylate polymer network structural characterization and interpretation of Physico-mechanical properties. Materials 12(24):4057. https://doi.org/10.3390/ma12244057

    Article  CAS  PubMed Central  Google Scholar 

  37. Dusek, K.; MacKnight, W., 1988. Cross-linking and structure of polymer networks. In Crosslinked Polymers: Chemistry, Properties, and Applications; Dickie, RA, Labana, SS, Bauer, RS, Eds; American Chemical Society: Washington, DC, 19; 1, pp. 2–27. https://doi.org/10.1021/bk-1988-0367.ch001

    Chapter  Google Scholar 

  38. Dickens SH, Stansbury JW, Choi KM, Floyd CJE (2003) Photopolymerization kinetics of methacrylate dental resins. Macromolecules 36(16):6043–6053. https://doi.org/10.1021/ma021675k

    Article  CAS  Google Scholar 

  39. Ghani F, Moosa R (2012) Effect of curing methods and temperature on porosity in acrylic resin denture bases. JPDA 21(03):127–135

    Google Scholar 

  40. Watts DC (2005) Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater 21:27–35. https://doi.org/10.1016/j.dental.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  41. Arrais CAG, Kasaz ADC, Albino LGB, Rodrigues JA, Reis AF (2010) Effect of curing mode on the hardness of dual-cured composite resin core build-up materials. Braz. Oral Res. 24:245–249. https://doi.org/10.1590/S1806-83242010000200019

    Article  PubMed  Google Scholar 

  42. Reis AF, Vestphal M, do Amaral RC, Rodrigues JA, Roulet JF, Roscoe MG (2017) Efficiency of polymerization of bulk-fill composite resins: a systematic review. Braz Oral Res 31:37–48. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0059

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the State University of Londrina - UEL for the provision of the necessary equipment to carry out the work, CAPES for the incentive through scholarship and the company FGM for the supply of material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Luiz Santana Vicentin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buelvas, D.D.A., Besegato, J.F., Vicentin, B.L.S. et al. Impact of light-cure protocols on the porosity and shrinkage of commercial bulk fill dental resin composites with different flowability. J Polym Res 27, 292 (2020). https://doi.org/10.1007/s10965-020-02257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02257-4

Keywords

Navigation