Skip to main content
Log in

Fabrication of antiseptic, conductive and robust polyvinyl alcohol/chitosan composite hydrogels

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Fabricating robust and multi-functional hydrogels is of great importance and challenge. In this work, chitosan (CS) and polyvinyl alcohol (PVA) were used to design antiseptic, conductive and robust hydrogels by a two-step method. Chemical structures of gels, the degree of crystallinity, the state of water in hydrogels, as well as their microstructures were characterized via a combination of FT-IR, XRD, DSC and SEM. Segment lengths of cross-linking points were calculated from elastic rubber theory. Their mechanical properties were evaluated on the electronic testing machine. It was shown that the tensile strength and elongation at break of single PVA hydrogel were only 200 kPa and 135%, respectively, due to the heterogenous structure with pore sizes between 1.5 ~ 8.2 μm. By introducing CS into PVA matrix followed with soaking in a saturated NaCl solution, the network became homogeneous with a pore size of 0.5 ~ 1.1 μm. Moreover, free water changed to bond water, and frictions between polymer chains increased because of hydrophobic associations and entanglements of CS segments. As a result, the tensile stress and strain increased to 3800 kPa and 270%, respectively. The gel also exhibited antiseptic property, electrical conductivity and swelling-resistant properties. The strength after reaching swell equilibrium was 3400 kPa, much higher than most gels at swollen states. This gel might find applications in bionic cartilage, sensors, food preservation and wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li J, Mo LT, Lu CH, Fu T, Yang HH, Tan WH (2016) Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev 45(5):1410–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Thiele J, Ma Y, Bruekers SMC, Ma SH, Huck WTS (2014) 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater 26(1):125–148

    CAS  PubMed  Google Scholar 

  3. Wang HY, Heilshorn SC (2015) Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater 27(25):3717–3736

    CAS  PubMed  PubMed Central  Google Scholar 

  4. An H, Chang LM, Shen JF, Zhao SH, Zhao MY, Wang XM, Qin JL (2019) Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. J Polym Res 26(2):26

    Google Scholar 

  5. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6(12):2583–2590

    CAS  Google Scholar 

  6. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

    CAS  Google Scholar 

  7. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(6):1120–1124

    CAS  Google Scholar 

  8. Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19(12):1622–1626

    CAS  Google Scholar 

  9. Okumura Y, Ito K (2001) The Polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13(7):485–487

    CAS  Google Scholar 

  10. Chen F, Lu SP, Zhu L, Tang ZQ, Wang QL, Gang Q, Yang J, Sun GZ, Zhang Q, Chen Q (2019) Conductive regenerated silk fibroin-based hydrogels with integrated high mechanical performances. J Mater Chem B 7(10):1708–1715

    CAS  PubMed  Google Scholar 

  11. Chen Q, Zhu L, Chen H, Yan HL, Huang LN, Yang J, Zheng J (2015) A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Funct Mater 25(10):1598–1607

    CAS  Google Scholar 

  12. Duan JJ, Zhang LN (2017) Robust and smart hydrogels based on natural polymers. Chin J Polym Sci 35(10):1165–1180

    CAS  Google Scholar 

  13. Guo FY, Wang N, Cheng QF, Hou LL, Liu JC, Yu YL, Zhao Y (2016) Low-cost coir Fiber composite with integrated strength and toughness. ACS Sustain Chem Eng 4(10):5450–5455

    CAS  Google Scholar 

  14. Ghasemzadeh H, Ghanaat F (2012) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21(3):355

    Google Scholar 

  15. Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang W, Fortunati E, Bertoglio F, Owczarek JS, Bruni G, Kozanecki M, Kenny JM, Torre L, Visai L, Puglia D (2018) Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 181:275–284

    CAS  PubMed  Google Scholar 

  17. Luo CH, Sun XX, Wang F, Wei N, Luo FL (2019) Utilization of L-serinyl derivate to preparing triple stimuli-responsive hydrogels for controlled drug delivery. J Polym Res 26:280

    CAS  Google Scholar 

  18. Kobayashi M, Toguchida J, Oka M (2003) Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 24(4):639–647

    CAS  PubMed  Google Scholar 

  19. Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21(3):355

    Google Scholar 

  20. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels Producd by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    CAS  Google Scholar 

  21. Ricciardi R, D'Errico G, Auriemma F, Ducouret G, Tedeschi AM, Rosa CD, Lauprêtre F, Lafuma F (2005) Short time dynamics of solvent molecules and Supramolecular Organization of Poly (vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38(15):6629–6639

    CAS  Google Scholar 

  22. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457

    PubMed  Google Scholar 

  23. Chen Q, Zhu L, Zhao C, Wang QM, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25(30):4171–4176

    CAS  PubMed  Google Scholar 

  24. Zhang HJ, Sun TL, Zhang AK, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong JP (2016) Tough physical double-network hydrogels based on Amphiphilic Triblock copolymers. Adv Mater 28(24):4884–4890

    CAS  PubMed  Google Scholar 

  25. Yang YY, Wang X, Yang F, Wang LN, Wu DC (2018) Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv Mater 30(18):e1707071

    PubMed  Google Scholar 

  26. Fan HL, Wang JH, Jin ZX (2018) Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds. Macromolecules 51(5):1696–1705

    CAS  Google Scholar 

  27. Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47(13):4445–4452

    CAS  Google Scholar 

  28. Cheng Y, Gray KM, David L, Royaud I, Payne GF, Rubloff GW (2012) Characterization of the cathodic electrodeposition of semicrystalline chitosan hydrogel. Mater Lett 87:97–100

    CAS  Google Scholar 

  29. Rodrigues FHA, Fajardo AR, Pereira AGB, Ricardo NMPS, Feitosa JPA, Muniz EC (2012) Chitosan-graft-poly(acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization. J Polym Res 19(12):1

    Google Scholar 

  30. Ladet SG, Tahiri K, Montembault AS, Domard AJ, Corvol MTM (2011) Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors. Biomaterials 32(23):5354–5364

    CAS  PubMed  Google Scholar 

  31. Treenate P, Monvisade P, Yamaguchi M (2014) Development of hydroxyethylacryl chitosan/alginate hydrogel films for biomedical application. J Polym Res 21(12):601

    Google Scholar 

  32. Kurdtabar M, Koutenaee RN, Bardajee GR (2018) Synthesis and characterization of a novel pH-responsive nanocomposite hydrogel based on chitosan for targeted drug release. J Polym Res 25(5):119

    Google Scholar 

  33. Wang T, Gunasekaran S (2006) State of water in chitosan–PVA hydrogel. J Appl Polym Sci 101(5):3227–3232

    CAS  Google Scholar 

  34. Zhang L, Zhao J, Zhu JT, He CC, Wang HL (2012) Anisotropic tough poly(vinyl alcohol) hydrogels. Soft Matter 8(40):10439–10447

    CAS  Google Scholar 

  35. Sun XX, Luo CH, Luo FL (2020) Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength. Eur Polym J (124):109465

  36. He QY, Huang Y, Wang SY (2018) Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv Funct Mater 28(5):1705069

    Google Scholar 

  37. Tobolsky AV, Carlson DW, Indictor N (1961) Rubber elasticity and chain configuration. J Polym Sci Polym Chem 54(159):175–192

    CAS  Google Scholar 

  38. Jiang GQ, Liu C, Liu XL, Chen QR, Zhang GH, Yang M, Liu FQ (2010) Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength. Polymer 51(6):1507–1515

    CAS  Google Scholar 

  39. Wang LY, Wang MJ (2016) Removal of heavy metal ions by poly(vinyl alcohol) and Carboxymethyl cellulose composite hydrogels prepared by a freeze–thaw method. ACS Sustain Chem Eng 4:2830–2837

    CAS  Google Scholar 

  40. Niknia N, Kadkhodaee R (2017) Factors affecting microstructure, physicochemical and textural properties of a novel gum tragacanth-PVA blend cryogel. Carbohydr Polym 155:475–482

    CAS  PubMed  Google Scholar 

  41. Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228

    CAS  Google Scholar 

  42. Jiang XC, Xiang NP, Zhang HX, Sun YJ, Lin Z, Hou LX (2018) Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr Polym 186:377–383

    CAS  PubMed  Google Scholar 

  43. Thanyacharoen T, Chuysinuanb P, Techasakul S, Nooeaid P, Ummartyotina S (2018) Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: release characteristics and antioxidant activity. Int J Biol Macromol 107(Pt A):363–370

    CAS  PubMed  Google Scholar 

  44. Fan LH, Yang H, Yang J, Peng M, Hu J (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr Polym 146:427–434

    CAS  PubMed  Google Scholar 

  45. Pretsch E, Bühlmann P, Badertscher M (2000) Structure determination of organic compounds. Springer-Verlag, Berlin

    Google Scholar 

  46. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  47. Wang L, Jian YK, Le XX, Lu W, Ma CX, Zhang JW, Huang YJ, Huang CF, Chen T (2018) Actuating and memorizing bilayer hydrogels for a self-deformed shape memory function. Chem Commun (Camb) 54(10):1229–1232

    CAS  Google Scholar 

  48. Lin P, Ma SH, Wang XL, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27(12):2054–2059

    CAS  PubMed  Google Scholar 

  49. Bai RB, Yang JW, Suo ZG (2019) Fatigue of hydrogels. Eur J Mech A-Solid 74:337–370

    Google Scholar 

  50. Wang YJ, Zhang XN, Song YH, Zhao YP, Chen L, Su FM, Li LB, Wu ZL, Zheng Q (2019) Ultrastiff and tough Supramolecular hydrogels with a dense and robust hydrogen bond network. Chem Mater 31(4):1430–1440

    CAS  Google Scholar 

  51. Wang R, Wang Q, Li L (2003) Evaporation behaviour of water and its plasticizing effect in modified poly(vinyl alcohol) systems. Polym Int 52(12):1820–1826

    CAS  Google Scholar 

  52. Zhou XY, Zhao F, Guo YH, Rosenberger B, Yu GH (2019) Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv 5:eaaw5484

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Trieu HH, Qutubuddin S (1994) Polyvinyl alcohol hydrogels I. Microscopic structure by freeze-etching and critical point drying techniques. Colloid Polym Sci 272(3):301–309

    CAS  Google Scholar 

  54. Luo CH, Wei N, Sun XX, Luo FL (2020) Fabrication of self-healable, conductive, and ultra-strong hydrogel from polyvinyl alcohol and grape seed–extracted polymer. J Appl Polym Sci 137:e49118

    Google Scholar 

  55. Gurses MS, Erkey C, Kizilel S, Uzun A (2017) Characterization of sodium Tripolyphosphate and sodium citrate dehydrate residues on surfaces. Talanta 176:8

    PubMed  Google Scholar 

  56. Kupiec TC, Goldenring JM, Vishnu R (2004) A non-fatal case of sodium toxicity. J Anal Toxicol 6:6

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Specialized Research Fund in Ningxia Higher Education Institutions (NGY2018-165), Natural Science Foundation of Ningxia Province (2020AAC03205), and Natural Science Foundation of China (21464001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChunHui Luo or FaLiang Luo.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Zhao, Y., Sun, X. et al. Fabrication of antiseptic, conductive and robust polyvinyl alcohol/chitosan composite hydrogels. J Polym Res 27, 269 (2020). https://doi.org/10.1007/s10965-020-02247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02247-6

Keywords

Navigation