Skip to main content

Advertisement

Log in

Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In recent years, coconut tree cultivation has intensified worldwide. Therefore, it is necessary to analyse the agribusiness of coconut residues and the environmental impacts that its waste can cause to slow degradation of approximately eight years. Considering this and knowing that coconut is a highly reusable product, the aim of the present study was to investigate the physical, mechanical and microstructural properties of castor oil-based polyurethane resin composites, reinforced with different contents coconuts husk fibres. The coconut husk fibres were characterized according to chemical composition, basic density, pH and surface SEM images. The composites with dimensions of (200 × 200 × 3 mm) were produced by hand lay-up, in which the resin was mixed at magnetic shaking in a beaker at 150 rpm for 5 min under vacuum with the coconut husk fibres. Then, the mixture was placed in a mould and pressed at 1 MPa at room temperature. Four different compositions were tested: 30, 50, 65 and 75% coconut husk fibres. Specimens were obtained from the composites to perform tensile tests, determine the bulk density and water absorption, as well as visualize the matrix-reinforcement interface using SEM. The results showed no significant differences between the compositions for water absorption, bulk density and modulus of elasticity (MOE) obtained in the tensile tests. The tensile strength of the composites tended to increase as greater amounts of coconut husk fibres were added to the matrix. The averages were around 4.39 to 5.64 MPa for composites with 30 and 75% fibres, respectively. The photomicrographs obtained using SEM indicated detachment between the matrix and the reinforcement, which may be attributed to the high levels of extractives (19.78%) present in the fibres. The tests showed the viability of replacing polymer with fibres, in levels of up to 75%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. FAOSTAT - Food and agriculture Organization of the United Nations. World Production

  2. Nunes MUC (2017) Compostagem laminar Como estratégia de sustentabilidade Para sistemas de produção de coco no nordeste. Seminário sobre manejo sustentável para a cultura do coqueiro, Aracaju, In

    Google Scholar 

  3. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2004) Beneficiamento da Casca de coco verde Para a produção de fibra e pó. Soluções tecnológicas

  4. Costa ACS, Lima G BA, Dias JC (2006) Estratégias de reutilização de resíduos: o Caso do projeto do coco verde. In: XIII SIMPEP (Simpósio de Engenharia de Produção), Bauru

  5. ASTM (2015) Standard terminology of composite materials, ASTM D-3878-07, Philladelphia

  6. Ligowski E, Santos BC, Fujiwara ST (2015) Composite materials based on fibers from sugar cane and recycled polymers obtained by extrusion technique. Polímeros 25:70–75. https://doi.org/10.1590/0104-1428.1605

    Article  CAS  Google Scholar 

  7. Hosseinpourpia R, Varshoee A, Soltani M, Hosseini P, Ziaei Tabari H (2012) Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites. Constr Build Mater 31:105–111. https://doi.org/10.1016/j.conbuildmat.2011.12.102

    Article  Google Scholar 

  8. Marques BR, Martins LJR (2009) Poliuretano derivado de óleo de mamona: de meio ambiente a biocompatibilidade. Lins, São Paulo

    Google Scholar 

  9. Suarez PAZ, Meneghetti SMP, Meneghetti MR, Wolf CR (2007) Transformação de triglicerídeos em combustíveis, materiais poliméricos e insumos químicos: algumas aplicações da catálise na oleoquímica. Quím Nova 30:667–676. https://doi.org/10.1590/S0100-40422007000300028

    Article  CAS  Google Scholar 

  10. Kloss JR (2007) Síntese e caracterização de poliuretanos biodegradáveis à base de poli(ε-caprolactona) diol. Tese (requisito parcial Para título de doutor em Ciências). Universidade federal do Paraná

  11. Merlini C, Soldi V, Barra GMO (2011) Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polym Test 30:833–840. https://doi.org/10.1016/j.polymertesting.2011.08.008

    Article  CAS  Google Scholar 

  12. Vasco MC, Claro Neto S, Nascimento EM, Azevedo E (2017) Gamma radiation effect on sisal/polyurethane composites without coupling agents. Polímeros 27:165–170. https://doi.org/10.1590/0104-1428.05916

    Article  Google Scholar 

  13. Ortega Z, Castellano J, Suárez L, Paz R, Díaz N, Benítez AN, Marrero MD (2019) Characterization of Agave americana L. plant as potential source of fibres for composites obtaining. SN Appl Sci 1:987–985. https://doi.org/10.1007/s42452-019-1022-2

    Article  CAS  Google Scholar 

  14. Anuar NIS, Zakaria S, Gan S, Chia CH, Wang C, Harun J (2019) Comparison of the morphological and mechanical properties of oil palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind Crop Prod 127:55–65. https://doi.org/10.1016/j.indcrop.2018.09.056

    Article  CAS  Google Scholar 

  15. Baley C, Goudenhooft C, Perré P, Lu P, Pierre F, Bourmaud A (2019) Compressive strength of flax fibre bundles within the stem and comparison with unidirectional flax/epoxy composites. Ind Crop Prod 130:25–33. https://doi.org/10.1016/j.indcrop.2018.12.059

    Article  CAS  Google Scholar 

  16. Vaisanen T, Batello P, Lappalainen R, Tomppo L (2018) Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Ind Crop Prod 111:422–429. https://doi.org/10.1016/j.indcrop.2017.10.049

    Article  CAS  Google Scholar 

  17. Sánchez ML, Capote G, Carrilo J (2019) Composites reinforced with Guadua fibers: Physical and mechanical properties. Constr Build Mater 228. https://doi.org/10.1016/j.conbuildmat.2019.116749, , 228

  18. Mesquita RGA, César AAS, Mendes LMM, Marconcini JM, Tonoli GHD (2018) Polyester composites reinforced with maleic anhydride-treated filaments from mauve. Cerne 24:1–8. https://doi.org/10.1590/01047760201824012453

    Article  Google Scholar 

  19. Srivastava KR, Singh MK, Mishra PK, Srivastava P (2019) Pre-treatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. J Polym Res 26:95. https://doi.org/10.1007/s10965-019-1751-3

    Article  CAS  Google Scholar 

  20. Moura AS, Demori R, Leão RM, Frankenberg CLC, Santana RMC (2019) The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mater Today Commun 18:191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006

    Article  CAS  Google Scholar 

  21. Henrique MA, Flauzino Neto, WP, Silvério HÁ, Martins DF, Gurgel LVA, Barud H da S, Pasquini D (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crop Prod 76:128–140. https://doi.org/10.1016/j.indcrop.2015.06.048

  22. Askeland DR, Phulé PP (2008) Ciência e engenharia dos materiais. Centage Learning, São Paulo

    Google Scholar 

  23. Dinesh S, Kumaran P, Mohanamurugan S, Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Bhat KS (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27:9. https://doi.org/10.1007/s10965-019-1975-2

    Article  CAS  Google Scholar 

  24. International Association of Wood Anatomy – IAWA (1989) List of microscopic features for wood identification. IAWA Bulletin, Leiden 10:226–332

    Google Scholar 

  25. Franklin GL (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155:3924–3951

    Article  Google Scholar 

  26. Berlyn GP, Miksche JP (1976) Botanical Microtechnique and Cytochemistry. Botanical microtechnique and cytochemistry. Yowa, State University, Ames

    Chapter  Google Scholar 

  27. ABNT (2010) Determination of soluble matter in ethanol-toluene and in dichloromethane and in acetone, ABNT NBR 14853. Janeiro, Rio de

    Google Scholar 

  28. ABNT (2010) Pulp and wood - determination of acid-insoluble lignin, ABNT NBR 7989. Janeiro, Rio de

    Google Scholar 

  29. ABNT (2017) Paper, board, pulps and wood - determination of residue (ash) on ignition at 525 °C, ABNT NBR 13999. Janeiro, Rio de

    Google Scholar 

  30. Browning BL (1963) The chemistry of wood

  31. Kennedy JF, Phillips GO, Williams PA (1987) Wood and cellulosics: industrial utilization, biotechnology, structure and properties. Ellis Horwood Limited, Chichester

    Google Scholar 

  32. Lelis R (1995) On the importance of the core constituents of compulsorily harvested conifer trees in the production of moisture-resistant and biologically resistant chipboard, using the example of Douglas fir (Pseudotsuga menziesii Mirb. Franco). Tesis, University of Göttingen

  33. ABNT (2003) Wood – determination of basic density, ABNT NBR 11941. Janeiro, Rio de

    Google Scholar 

  34. ASTM (1989) Standard test method for tensile strength and Young’s Modulus for high Modulus single filament materials, ASTM D-3379-75, Philladelphia

  35. ASTM (2018) Standard test method for water absorption of plastics, ASTM D-570-98, Philladelphia

  36. ASTM (2014) Standard test method for tensile properties of plastics, ASTM D-638-14, Philladelphia

  37. Ferreira DF (2014) Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciênc Agrotec 38:109–112 https://doi.org/10.1590/S1413-70542014000200001

    Article  Google Scholar 

  38. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B: Engineering 39:933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  CAS  Google Scholar 

  39. Ding XD, Jiang ZH, Sun J, Lian JS, Xiao L (2002) Stress-strain behavior in initial yield stage of short fiber reinforced metal matrix composite. Compos Sci Technol 62:841–850. https://doi.org/10.1016/S0266-3538(02)00024-6

  40. Pereira PHF, Rosa MF, Cioffi MOH, Benini KCCC, Milanese AC, Voorwald HJC, Mulinari DR (2015) Vegetal fibers in polymeric composites: a review. Polimeros 25:9–22. https://doi.org/10.1590/0104-1428.1722

    Article  CAS  Google Scholar 

  41. Hernandez JP, Raush T, Rios A, Strauss S, Oswald A (2002) Analysis of fiber damage mechanisms during processing of reinforced polymer melts. Eng Anal Bound Elem 26:621–628. https://doi.org/10.1016/S0955-7997(02)00018-8

  42. Mutjé P, Lopez A, Vallejos ME, López JP, Vilaseca F (2007) Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Compos Part A 38:369–377. https://doi.org/10.1016/j.compositesa.2006.03.009

    Article  CAS  Google Scholar 

  43. Fiorelli J, Lahr FAR, Nascimento MF, Savastano Junior H, Rossignolo JÁ (2011) Particleboards of sugar cane bagasse and castor oil resin – production and properties. Acta Sci Technol 33:401–406. https://doi.org/10.4025/actascitechnol.v33i4.9615

    Article  CAS  Google Scholar 

  44. Comisión Panamericana de Normas técnicas - COPANT (1974) Descripción de características generales, macroscópicas y microscópicas de la Madera Angiospermae Dicotiledóneas. COPANT 30:1–19

  45. Main NM, Talib RA, Ibrahim R, Rahman RA, Mohamed AZ (2014) Suitability of coir fibers as pulp and paper. Agric Agric Sci Procedia 2:304–311. https://doi.org/10.1016/j.aaspro.2014.11.043

    Article  Google Scholar 

  46. Iwakiri S (2005) Painéis de madeira reconstituída. FUPEF, Curitiba

    Google Scholar 

  47. Boa AC, Gonçalves FG, Oliveira JTS, Paes JB, Arantes MDC (2014) Eucalypts timber wastes glued with urea formaldehyde resin at room temperature. Sci For 42(102):279–288

    Google Scholar 

  48. Cardoso MS, Gonçalez JC (2016) Utilizacion of coconut husk (Cocos nucifera L.) for cellulose pulp production. Ciênc Flor 26:321–330. https://doi.org/10.5902/1980509821126

    Article  Google Scholar 

  49. Tsoumis G (1991) Science and Technology of Wood: structure, properties, utilization. Van Nostrand Reinhold, New York

    Google Scholar 

  50. Bezerra AFC (2014) Desenvolvimento de compósito poliéster insaturado/fibras vegetais (caroá e coco). Tese (Doutorado em Ciências e Engenharia de Materiais). Universidade Federal de Campina Grande

  51. Yan L, Chouw N, Huang L, Kasal B (2016) Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr Build Mater 112:168–182. https://doi.org/10.1016/j.conbuildmat.2016.02.182

    Article  CAS  Google Scholar 

  52. Cabral MMS, Abud AKS, Silva CEF, Almeida RMRG (2016) Bioethaol production from coconut husk fiber. Ciência Rural 46:1872–1877. https://doi.org/10.1590/0103-8478cr20151331

    Article  Google Scholar 

  53. Pereira TGT, Mendes JF, Oliveira JE, Marconcini JM, Mendes RF (2018) Effect of reinforcement percentage of eucalyptus fibers on physico-mechanical properties of composite hand lay-up with polyester thermosetting matrix. J Nat Fibers 16:806–816. https://doi.org/10.1080/15440478.2018.1439426

    Article  CAS  Google Scholar 

  54. Gassan J, Bledzki AK (1997) The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Compos Part A 28:1001–1005. https://doi.org/10.1016/S1359-835X(97)00042-0

  55. Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohyd Polym 79:832–838. https://doi.org/10.1016/j.carbpol.2009.10.005

    Article  CAS  Google Scholar 

  56. Mulinari DRA, Baptista CARPB, Souza JVCA, Voorwald HJCC (2011) Mechanical properties of coconut fibers reinforced polyester composites. Procedia Engineering 10:2074–2079. https://doi.org/10.1016/j.proeng.2011.04.343

    Article  CAS  Google Scholar 

  57. Karthikeyan A, Balamurugan K, Kalpana A (2014) The effect of sodium hydroxide treatment and fiber length on the tensile property of coir fiber-reinforced epoxy composites. Sci Eng Compos Mater 21:315–321. https://doi.org/10.1515/secm-2013-0130

    Article  CAS  Google Scholar 

  58. Aragão WM, Santos VAJ, Aragão FB (2005) Produção de fibra de cultivares de coqueiro. Embrapa, Comunicado Técnico, Aracaju, pp 1–4(4)

    Google Scholar 

  59. Lima CKP, Mori FA, Mendes LM, Carneiro ACO (2007) Características anatômicas e química da madeira de clones de Eucalyptus e sua influência na colagem. Cerne 13:123–129

    Google Scholar 

  60. Sebenik U, Krajnc M (2007) Influence of the soft segment length and content in the synthesis and properties of isocyanate – terminated urethane prepolymers. Int J Adh Adh 27:527–535. https://doi.org/10.1016/j.ijadhadh.2006.10.001

    Article  CAS  Google Scholar 

  61. Stokke DD, Wu Q, Han G (2014) Introduction to wood and natural fiber composites. John Wiley & Sons, West Sussex

    Google Scholar 

  62. Callister Junior WD (2006) Fundamentos da ciência e engenharia de materiais: uma abordagem integrada. LTC, Rio de Janeiro

    Google Scholar 

  63. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Ch 19:256–271. https://doi.org/10.1080/1023666X.2014.880016

    Article  CAS  Google Scholar 

  64. Arsyad M (2017) Effect of alkali treatment on the coconut fiber surface. ARPN J Eng Appl Sci 12:1870–1875

    CAS  Google Scholar 

  65. Güner FS, Baranak M, Soytas S, Erciyes AT (2004) Flow behavior of oil-modified polymer solutions. Prog Org Coat 50:172–178. https://doi.org/10.1016/j.porgcoat.2003.12.004

    Article  CAS  Google Scholar 

  66. Mesquita RGA, Mendes LM, Sanadi AR, Sena Neto AR, Claro PIC, Corrêa AC, Marconcini JM (2018) Urea formaldehyde and cellulose nanocrystals adhesive: studies applied to sugarcane bagasse particleboards. J Polym Environ 26:3040–3050. https://doi.org/10.1007/s10924-018-1189-4

    Article  CAS  Google Scholar 

  67. Silva RV (2003) Composite based on polyurethane resin derived from castor oil and vegetable fibers. Tese (Doutorado em Ciência e Engenharia de Materiais), Universidade de São Paulo

  68. Santos EF, Moresco M, Rosa SML, Nachtigall SMB (2010) Extrusion of PP composites with short coir fibers: effect of temperature and coupling agents. Polímeros 20:215–220. https://doi.org/10.1590/S0104-14282010005000036

    Article  CAS  Google Scholar 

  69. Das E, Saha AK, Choudhury PK, Basak RK, Mitra BC, Todd T, Lang S, Rowell RM (2000) Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J Appl Polym Sci 76:1652–1661. https://doi.org/10.1002/(SICI)1097-4628(20000613)76:11<1652::AID-APP6>3.0.CO;2-X

    Article  CAS  Google Scholar 

  70. Silvestre Filho GD (2001) Mechanical behavior of carbon fiber reinforced polyurethane derived from castor oil: contribution for the design of hip implant stems. Dissertação (Mestrado) – Escola de Engenharia de São Carlos

  71. Marinho NP, Nascimento EM, Nisgoski S, Magalhães WLE, Neto SC, Azevedo EC (2013) Physical and thermal characterization of polyurethane based on castor oil composite with bamboo particles. Polímeros 23:201–205. https://doi.org/10.4322/S0104-14282013005000007

    Article  CAS  Google Scholar 

  72. El-Shekeil YA, Sapuan SM, Algrafi MW (2014) Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites. Mater Design 64:330–333. https://doi.org/10.1016/j.matdes.2014.07.034

    Article  CAS  Google Scholar 

  73. Merlini C, Barra GMO, Schmitz DP, Ramôa SDAS, Silveira A, Araujo TM, Pegoretti A (2014) Polyaniline-coated coconut fibers: structure, properties and their use as conductive additives in matrix of polyurethane derived from castor oil. Polym Test 38:18–25. https://doi.org/10.1016/j.polymertesting.2014.06.005

    Article  CAS  Google Scholar 

  74. Callister WD (2002) Ciência e engenharia de materiais: uma introdução. LTC, Rio Janeiro

    Google Scholar 

  75. Joseph K, Medeiros ES, Carvalho LH (1999) Tensile properties of unsaturated polyester composites reinforced by short sisal fibers. Polímeros 9:136–141. https://doi.org/10.1590/S0104-14281999000400023

    Article  CAS  Google Scholar 

  76. Yuhazri YM, Phongsakorn PT, Sihombing H (2010) A comparison process between vacuum infusion and hand lay-up method toward kenaf polyester composite. Int J Basic Appl Sci 10:54–57

    Google Scholar 

  77. Carvalho LH, Cavalcanti WS (2006) Properties of polyester/hibrid sisal-glass fabrics. Polímeros 16:33–37. https://doi.org/10.1590/S0104-14282006000100009

    Article  Google Scholar 

  78. Chawla K (1998) Composite materials: science and engineering. Springer Verlag, New York

    Book  Google Scholar 

  79. Rodrigues J, Souza JÁ, Fujiyama R (2016) Polimeric composites reinforced with natural fibers from Amazon manufactured by infusion. Revista Matéria 20:946–960. https://doi.org/10.1590/S1517-707620150004.0099

    Article  Google Scholar 

  80. Anderson TL (1995) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  81. Otto GP, Moisés MP, Carvalho G, Rinaldi AW, Garcia JC, Radovanovic E, Fávaro SL (2017) Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Compos Part B 110:459–465. https://doi.org/10.1016/j.compositesb.2016.11.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Lamounier Faria.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, D.L., Júnior, L.M., de Almeida Mesquita, R.G. et al. Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres. J Polym Res 27, 249 (2020). https://doi.org/10.1007/s10965-020-02238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02238-7

Keywords

Navigation