Skip to main content

Advertisement

Log in

Novel synthesis, DFT and investigation of the optical and electrical properties of carboxymethyl cellulose/thiobarbituric acid/copper oxide [CMC + TBA/CuO]C nanocomposite film

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel synthesis blend of sodium carboxymethyl cellulose (CMC) with thiobarbituric acid (TBA) [CMC + TBA]B has been doped with CuO to study the optical and direct electrical (DC) properties of [CMC + TBA/CuO]C nanocomposite films. Different characterization techniques for [CMC]TF, [TBA]TF, [CMC + TBA]B and [CMC + TBA/CuO]C such as Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and optical properties have been used. SEM showed a good dispersion of copper oxide nanoparticles [CuO]NPs on [CMC + TBA]B film surface. The dielectric constant ε(ω), optical conductivity σ(ω) and DC properties increased and demonstrated wave-like performance with increasing [CuO]NPs ratio at hν range of 0.7 eV – 5.0 eV. Copper content [CuO]NPs increases lead to the formation of a wide variety of 3D-semiconductor networks within [CMC + TBA]B film matrix which increase optical conductivity. The optimization was performed using density functional theory (DFT) by DMol3 and Cambridge Serial Total Energy Package (CASTEP). In Experimental section by using Tauc’s equation, the results clearly show that the values of optical energy band gap \( {E}_g^{Opt} \) decreases from 2.978 eV for [CMC]TF, 2.725 eV for [TBA]TF, 2.625 eV for [CMC + TBA]B to 2.488 eV for [CMC + TBA/CuO]C. The simulated FTIR, XRD, and optical properties by Gaussian software and CATSTEP are in great agreement with the experimental study. The [CMC + TBA/CuO]C presents a good candidate for optoelectronics and solar cell applications.

The computed band gaps using Tauc’s equation, potential, SEM, AFM and MEP for [CMC + TBA/CuO]C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Qi X-D, Wang Y (2020) Novel techniques for the preparation of shape-memory polymers, Polymer Blends and Composites at Micro and Nanoscales, Shape Memory Polymers, Blends and Composites, Springer, pp. 53–83

  2. Zarrintaj P, Saeb MR, Jafari SH, Mozafari M (2020) Application of compatibilized polymer blends in biomedical fields, Compatibilization of Polymer Blends, Elsevier, pp. 511–537

  3. Correa A, Pereira E, de Oliveira A (2020) Magnetic properties of conducting polymers, Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies, Springer, pp. 493–510

  4. Abd-Elmageed A, Al-Hossainy A, Fawzy E, Almutlaq N, Eid M, Bourezgui A, Abdel-Hamid S, Elsharkawy N, Zwawi M, Abdel-Aziz M (2020) Synthesis, characterization and DFT molecular modeling of doped poly (Para-nitroaniline-co-Para-toluidine) thin film for optoelectronic devices applications. Opt Mater 99:109593

    CAS  Google Scholar 

  5. El Sayed A, El-Gamal S (2015) Synthesis and investigation of the electrical and dielectric properties of co 3 O 4/(CMC+ PVA) nanocomposite films. J Polym Res 22:97

    Google Scholar 

  6. Wu D, Chang PR, Ma X (2011) Preparation and properties of layered double hydroxide–carboxymethylcellulose sodium/glycerol plasticized starch nanocomposites. Carbohydr Polym 86:877–882

    CAS  Google Scholar 

  7. Singh BK, Dutta PK (2016) Chitin, chitosan, and silk fibroin electrospun nanofibrous scaffolds: a prospective approach for regenerative medicine, Chitin and Chitosan for Regenerative Medicine, Springer, pp. 151–189

  8. Wang Y, Zhang Z, Wang M, Guo C, Liu H, Zeng H, Duan X, Zhou Y, Tang Z (2018) Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method. Cellulose 25:105–115

    CAS  Google Scholar 

  9. Hamer JW (1995) [Method of processing] photographic elements having fogged grains and development inhibitors for interimage, Google Patents 5:399,466

  10. Bourezgui A, Kacem I, Daoudi M, Al-Hossainy AF (2020) Influence of gamma-irradiation on structural, optical and Photocatalytic performance of TiO 2 nanoparticles under controlled atmospheres. J Electron Mater 49:1904–1921

    CAS  Google Scholar 

  11. Costa H, Gallego SM, Tomaro MAL (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci 162:939–945

    CAS  Google Scholar 

  12. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079

    CAS  Google Scholar 

  13. Islam S, Bhuiyan MR, Islam M (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25:854–866

    CAS  Google Scholar 

  14. Agarwal R, Alam MS, Gupta B (2013) Polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose membranes for drug delivery. J Appl Polym Sci 129:3728–3736

    CAS  Google Scholar 

  15. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A (2016) Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym 151:9–19

    CAS  PubMed  Google Scholar 

  16. Esmaeilzadeh P, Hosseinpour N, Bahramian A, Fakhroueian Z, Arya S (2014) Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air–water and n-heptane–water interfaces. Fluid Phase Equilib 361:289–295

    CAS  Google Scholar 

  17. Babu IM, William JJ, Muralidharan G (2019) Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl Surf Sci 480:371–383

    CAS  Google Scholar 

  18. Yadav M, Rhee KY, Park S (2014) Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohydr Polym 110:18–25

    CAS  PubMed  Google Scholar 

  19. Yang Z, Zhao W, Niu Y, Zhang Y, Wang L, Zhang W, Xiang X, Li Q (2018) Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon 132:241–248

    CAS  Google Scholar 

  20. Alizadegan R, Liao AD, Xiong F, Pop E, Hsia KJ (2012) Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes. Nano Res 5:235–247

    CAS  Google Scholar 

  21. Yun Y (2006) Nanotube sensors and actuators in mechanics and medicine, University of Cincinnati

  22. Ibrahim E, Abdel-Rahman LH, Abu-Dief AM, Elshafaie A, Hamdan SK, Ahmed A (2018) The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic properties. Mater Res Bull 107:492–497

    CAS  Google Scholar 

  23. Wu R, Qian X, Yu F, Liu H, Zhou K, Wei J, Huang Y (2013) MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J Mater Chem A 1:11126–11129

    CAS  Google Scholar 

  24. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R (2012) Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol 217:330–339

    CAS  Google Scholar 

  25. Abdel-Aziz M, Zoromba MS, Bassyouni M, Zwawi M, Alshehri A, Al-Hossainy A (2020) Synthesis and characterization of co-Al mixed oxide nanoparticles via thermal decomposition route of layered double hydroxide, J Molec Struct, 127679

  26. Zoromba MS, Al-Hossainy A (2020) Doped poly (o-phenylenediamine-co-p-toluidine) fibers for polymer solar cells applications. Sol Energy 195:194–209

    CAS  Google Scholar 

  27. Akash MSH, Rehman K (2020) Infrared spectroscopy, Essentials of Pharmaceutical Analysis, Springer, pp. 57–80

  28. Al-Hossainy AF, Eid MR, Zoromba MS (2019) Prediction of molecular characteristics and molecular spectroscopy of hydrochloric acid-doped poly (ortho-Anthranilic acid-co-Para Nitroaniline) thin film. J Electron Mater 48:8107–8115

    CAS  Google Scholar 

  29. Paul D, Neogi S (2019) Synthesis, characterization and a comparative antibacterial study of CuO, NiO and CuO-NiO mixed metal oxide. Mater Res Exp 6:055004

    CAS  Google Scholar 

  30. Hassan FS, Al-Hossainy AF, Mohamed AE (2009) Diphosphine compounds, part III: UV/visible spectroscopy and novel routes to functionalized diphosphine-M (CO) 6 complexes (M= W, Mo, or Cr). Phosphorus Sulfur Silicon 184:2996–3022

    CAS  Google Scholar 

  31. Minami N, Kim Y, Miyashita K, Kazaoui S, Nalini B (2006) Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy. Appl Phys Lett 88:093123

    Google Scholar 

  32. Hebeish A, Sharaf S (2015) Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv 5:103036–103046

    CAS  Google Scholar 

  33. Al-Hossainy AF, Zoromba MS (2019) Doped-poly (Para-nitroaniline-co-aniline): synthesis, semiconductor characteristics, density, functional theory and photoelectric properties. J Alloys Compd 789:670–683

    CAS  Google Scholar 

  34. Zohuriaan M, Shokrolahi F (2004) Thermal studies on natural and modified gums. Polym Test 23:575–579

    CAS  Google Scholar 

  35. Zoromba MS, Bassyouni M, Abdel-Aziz M, Al-Hossainy AF, Salah N, Al-Ghamdi A, Eid MR (2019) Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures. Applied Physics A 125:642

    Google Scholar 

  36. Jäger N, Meindlhumer M, Spor S, Hruby H, Julin J, Stark A, Nahif F, Keckes J, Mitterer C, Daniel R (2020) Microstructural evolution and thermal stability of AlCr (Si) N hard coatings revealed by in-situ high-temperature high-energy grazing incidence transmission X-ray diffraction. Acta Mater 186:545–554

    Google Scholar 

  37. Al-Hossainy AF, Eid MR, Zoromba MS (2019) Structural, DFT, optical dispersion characteristics of novel [DPPA-Zn-MR (cl)(H2O)] nanostructured thin films. Mater Chem Phys 232:180–192

    CAS  Google Scholar 

  38. Bzik S, Jansen M (2003) X-ray diffraction studies on Mesophases of Cetyl-and Dodecyltrimethylammoniumbromide in liquid Ammonia. Chem Eur J 9:613–620

    CAS  PubMed  Google Scholar 

  39. Roy A (2018) Hybrid Polyaniline Nanocomposite For Humidity Sensing, Lulu.com

  40. Abdel-Aziz M, Al-Hossainy A, Ibrahim A, El-Maksoud SA, Zoromba MS, Bassyouni M, Abdel-Hamid S, Abd-Elmageed A, Elsayed I, Alqahtani O (2018) Synthesis, characterization and optical properties of multi-walled carbon nanotubes/aniline-o-anthranilic acid copolymer nanocomposite thin films. J Mater Sci Mater Electron 29:16702–16714

    CAS  Google Scholar 

  41. Al-Hossainy A, Thabet HK, Zoromba MS, Ibrahim A (2018) Facile synthesis and fabrication of a poly (ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J Chem 42:10386–10395

    CAS  Google Scholar 

  42. Starova G, Krivovichev S, Filatov S (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. Crystal structure of Cu4O2 [(As, V) O4] Cl1. Z Krist 213:650–653

    CAS  Google Scholar 

  43. Duman F, Ocsoy I, Kup FO (2016) Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater Sci Eng C 60:333–338

    CAS  Google Scholar 

  44. El Sayed A, El-Gamal S, Morsi W, Mohammed G (2015) Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J Mater Sci 50:4717–4728

    Google Scholar 

  45. Al-Hossainy A, Bassyouni M, Zoromba MS (2018) Elucidation of electrical and optical parameters of poly (o-anthranilic acid)-poly (o-amino phenol)/copper oxide nanocomposites thin films. J Inorg Organomet Polym Mater 28:2572–2583

    CAS  Google Scholar 

  46. Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J (2018) Critical role of molecular electrostatic potential on charge generation in organic solar cells. Chin J Chem 36:491–494

    CAS  Google Scholar 

  47. El-Gammal OA, Al-Hossainy AF, El-Brashy SA (2018) Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of co (II), Ni (II) and cu (II) complexes derived from macrocyclic Schiff base. J Mol Struct 1165:177–195

    CAS  Google Scholar 

  48. Saadiah M, Zhang D, Nagao Y, Muzakir S, Samsudin A (2019) Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J Non-Cryst Solids 511:201–211

    CAS  Google Scholar 

  49. Al-Hossainy A, Zoromba MS (2018) New organic semiconductor thin film derived from p-toluidine monomer. J Mol Struct 1156:83–90

    CAS  Google Scholar 

  50. Kumar TA, Mariselvi P, Alagumuthu G (2019) Optical and Photocatalytic activity of Cmc capped zinc Selenide nanoparticles under UV light irradiation using Congo red dye. J Catalyst Catalysis 6:25–35

    CAS  Google Scholar 

  51. Al-Hossainy A, Zoromba MS, El-Gammal O, El-Dossoki FI (2019) Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Struct Chem 30:1365–1380

    CAS  Google Scholar 

  52. Polak MP, Kudrawiec R, Rubel O (2019) Electronic band structure of nitrogen diluted Ga (PAsN): formation of the intermediate band, direct and indirect optical transitions, and localization of states. J Appl Phys 126:175701

    Google Scholar 

  53. Al-Hossainy A, Zoromba MS, Abdel-Aziz M, Bassyouni M, Attar A, Zwawi M, Abd-Elmageed A, Maddah H, Slimane AB (2019) Fabrication of heterojunction diode using doped-poly (ortho-aminophenol) for solar cells applications. Phys B Condens Matter 566:6–16

    CAS  Google Scholar 

  54. Badry R, El-Khodary S, Elhaes H, Nada N, Ibrahim M (2019) The influence of moisture on the electronic properties of monomer, dimer, Trimer and Emeraldine Base sodium Carboxymethyl cellulose. Egypt J Chem 62:39–56

    Google Scholar 

  55. Zoromba MS, Abdel-Aziz M, Bassyouni M, Bahaitham H, Al-Hossainy A (2018) Poly (o-phenylenediamine) thin film for organic solar cell applications. J Solid State Electrochem 22:3673–3687

    CAS  Google Scholar 

  56. De La Mora M, Amelines-Sarria O, Monroy B, Hernández-Pérez C, Lugo J (2017) Materials for downconversion in solar cells: perspectives and challenges. Sol Energy Mater Sol Cells 165:59–71

    Google Scholar 

  57. Yousefi A, Aslanzadeh SA, Akbari J (2018) Experimental and DFT studies of 1-methylimidazolium trinitrophenoxide as modifier for corrosion inhibition of SDS for mild steel in hydrochloric acid. Anti-Corrosion Methods and Materials 65:107–122

    CAS  Google Scholar 

  58. Sørensen KT, Ingvorsen CB, Nielsen LH, Kristensen A (2018) Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor. Opt Express 26:5416–5422

    PubMed  Google Scholar 

  59. Hashim A, Hadi Q (2018) Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J Mater Sci Mater Electron 29:11598–11604

    CAS  Google Scholar 

  60. Ibrahim A, Abdel-Aziz M, Zoromba MS, Al-Hossainy A (2018) Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth Met 238:1–13

    CAS  Google Scholar 

  61. Al-Hossainy AF, Abd-Elmageed A, Ibrahim ATA (2015) Synthesis, structural and optical properties of gold nanoparticle-graphene-selenocysteine composite bismuth ultrathin film electrode and its application to Pb (II) and Cd (II) determination, Arab J Chemist

  62. Habeeb MA, Hashim A, Hadi A (2017) Fabrication of new nanocomposites: CMC-PAA-PbO2 nanoparticles for piezoelectric sensors and gamma radiation shielding applications. Sens Lett 15:785–790

    Google Scholar 

  63. Kuo S-Y, Chen W-C, Lai F-I, Cheng C-P, Kuo H-C, Wang S-C, Hsieh W-F (2006) Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J Cryst Growth 287:78–84

    CAS  Google Scholar 

  64. Zoromba MS, Al-Hossainy A, Abdel-Aziz M (2017) Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Synth Met 231:34–43

    CAS  Google Scholar 

  65. Raja V, Sharma A, Rao VN (2004) Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films. Mater Lett 58:3242–3247

    CAS  Google Scholar 

  66. Ma T, Liu Z, Wen J, Gao Y, Ren X, Chen H, Jin C, Ma X-L, Xu N, Cheng H-M (2017) Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat Commun 8:1–9

    Google Scholar 

  67. Abdel-Galil A, Ali H, Atta A, Balboul M (2014) Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J Radiat Res Appl Sci 7:36–43

    CAS  Google Scholar 

  68. Al Nasiri N, Patra N, Ni N, Jayaseelan DD, Lee WE (2016) Oxidation behaviour of SiC/SiC ceramic matrix composites in air. J Eur Ceram Soc 36:3293–3302

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed F. Al-Hossainy.

Ethics declarations

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Prof. Ahmed F. Al-Hossainy

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1- Novel synthesis of [CMC + TBA]B and [CMC + TBA/CuO]C nanocomposite film.

2- Fabrication of nanostructure thin film of [CMC]TF and [ZnCMC]TF powder used spin coating technique of thickness 150 ± 2 nm.

3- Characterization of [CuO]NPs, [CMC + TBA]B and [CMC + TBA/CuO]C nanocomposite film by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal analysis (ATG), Scanning Electron Microscopy (SEM), DFT simulation, AFM spectroscopy, optical and electrical properties.

4- The obtained average optical energy gaps for [CMC + TBA]B and [CMC + TBA/CuO]C nanocomposite films are 2.79 eV and 2.03 eV, respectively.

Electronic supplementary material

ESM 1

(DOCX 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.M., Bourezgui, A. & Al-Hossainy, A.F. Novel synthesis, DFT and investigation of the optical and electrical properties of carboxymethyl cellulose/thiobarbituric acid/copper oxide [CMC + TBA/CuO]C nanocomposite film. J Polym Res 27, 264 (2020). https://doi.org/10.1007/s10965-020-02235-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02235-w

Keywords

Navigation