Skip to main content
Log in

Influence of MWCNTs and nano-Fe3O4 on the properties and structure of MWCNTs/ Fe3O4/PLA composite film with electromagnetic interference shielding function

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A large number of electronic devices could generate a lot of electromagnetic waves, which could interfere with other equipment and harm the human body. Therefore, an electromagnetic interference shielding (EMI) material is urgently needed to protect the human body and the electronic equipment. In this paper, the multi-wall carbon nanotubes (MWCNTs) and the nano-Fe3O4 were added into the polylactic acid (PLA) matrix to form the composite film with electromagnetic interference shielding performance. And the structure and properties of MWCNTs/Fe3O4/PLA composite films, such as the morphology, chemical structure, crystallization, mechanical property, conductive property, magnetic property and electromagnetic interference shielding property, were researched. The result shows that too much Fe3O4 could lead to agglomeration, and the coupling agent KH570 had grafted and modified the surface of MWCNTs. The MWCNTs and nano-Fe3O4 could increase the crystallinity of PLA matrix. With the increase of MWCNTs, the maximum tensile stress of composite films gradually increased, and the maximum tensile strain decreased, and the resistance value showed a significant downward trend. The Fe3O4 could improve the magnetic properties of composite film. The MWCNTs and Fe3O4 could improve the electromagnetic interference shielding efficiency (EMI SE). The MWCNTs played a more significant role than the Fe3O4 in the process of EMI, and the EMI SE of the composite film with 3:1 ratios of MWCNTs/Fe3O4 could rise to 22 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomassin JM, Jerome C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat Sci Eng R 74:211–232

    Article  Google Scholar 

  2. Xiao S, Mei H, Han D, Dassios KG, Cheng L (2017) Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon 122:718–725

    Article  CAS  Google Scholar 

  3. Zheng X, Feng J, Zong Y, Miao H, Hu X, Bai J, Li X (2015) Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J Mater Chem C 3:4452–4463

    Article  CAS  Google Scholar 

  4. Kausar A, Ahmad S, Salman SM (2017) Effectiveness of polystyrene/carbon nanotubes composites in electromagnetic interference shielding materials: a review. Polym Plast Technol 56:1027–1042

    Article  CAS  Google Scholar 

  5. Rajesh K, Andrei VA, Rajesh KS, Ashwani KS, Jyoti S, Ravinder KK, Kedar S, Yoshiyuki S, Stanislav AM (2019) Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Compos Part B 168:66–76

    Article  Google Scholar 

  6. Zeng Z, Jin H, Chen M, Li W, Zhou L, Zhang Z (2016) Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv Funct Mater 26:303–310

    Article  CAS  Google Scholar 

  7. Yan Q, Yan Z, Na Q, Wang Q, Zhang X, Li Y (2019) Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles. ACS Appl Mater Inter 11:10409–10417

    Article  Google Scholar 

  8. Wang G, Zhao G, Wang S, Zhang L, Park CB (2018) Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J Mater Chem C 6:6847–6859

    Article  CAS  Google Scholar 

  9. Hooman A, Marcelo A, Jose IV (2019) Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog Mater Sci 103:319–373

    Article  Google Scholar 

  10. Liang Q, Lu Y (2013) Copper/bamboo fabric composite prepared via a silver catalytic electroless deposition process for electromagnetic interference shielding. Int J Mater Res 104:912–917

    Article  CAS  Google Scholar 

  11. Park SH, Bae J (2017) Polymer composite containing carbon nanotubes and their applications. Recent Pat Nanotech 11:109–115

    Article  CAS  Google Scholar 

  12. Ates M, Eker AA (2017) Carbon nanotube-based nanocomposites and their applications. J Adhes Sci Technol 31:1977–1997

    Article  CAS  Google Scholar 

  13. Koysuren O, Yesil S, Bayram G (2007) Effect of surface treatment on electrical conductivity of carbon black filled conductive polymer composites. J Appl Polym Sci 104:3427–3433

    Article  CAS  Google Scholar 

  14. Yu Z, He H, Wang C, Wang H, Chen Y (2018) Study on effect of ferroferric oxide and polypyrrole on antielectromagnetic radiation finishing and electromagnetic interference shielding property of cotton fabric. J silk in Chinese 55:19–24

    Google Scholar 

  15. Wang G, Wang L, Mark LH, Shaayegan V, Wang G, Li H, Zhao G, Park CB (2018) Ultralow-threshold and lightweight biodegradable porous PLA/ MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl Mater Inter 10:1195–1203

    Article  CAS  Google Scholar 

  16. An GS, Han JS, Shin JR, Cha JH, Kim BG, Jung YG, Choi SC (2019) Size- tunable carboxylic functionalized Fe3O4 nanoparticle and evaluation of its magnetic and dispersion properties. J Alloy Comp D 792:1008–1012

    Article  CAS  Google Scholar 

  17. Liu S, Wu G, Chen X, Zhang X, Yu J, Liu M, Zhang Y, Wang P (2019) Degradation behavior in vitro of carbon nanotubes (CNTs)/poly(lactic acid) (PLA) composite suture. Polymers 11:1015

    Article  CAS  Google Scholar 

  18. Ren F, Li Z, Xu L, Sun Z, Ren P, Yan D, Li Z (2018) Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Compos Part B 155:405–413

    Article  CAS  Google Scholar 

  19. Li X, Qi C, Han L, Chu C, Bai J, Guo C, Xue F, Shen B, Chu PK (2017) Influnence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and mg/PLA composite. Acta Biomater 64:269–278

    Article  CAS  Google Scholar 

  20. Gorrasi G, Milone C, Piperopoulos E, Lanza M, Sorrentino A (2013) Hybrid clay mineral-carbon nanotube-PLA nanocomposite films. Preparation and photodegradation effect on their mechanical, thermal and electrical properties. Appl Clay Sci 71:49–54

    Article  CAS  Google Scholar 

  21. Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight, multifunctional polyetherimide/ graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Inter 5:11383–11391

    Article  CAS  Google Scholar 

  22. Zeng X, Yu S, Sun R, Xu J (2015) Mechanical reinforcement while remaining electrical insulation of glass fibre/polymer composites using core-shell CNT@SiO2 hybrids as fillers. Compos Part A 73:260–268

    Article  CAS  Google Scholar 

  23. Poduval RK, Noimark S, Colchester RJ, Macdonald TJ, Parkin IP, Desjardins AE, Papakonstantinou I (2017) Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite. Appl Phys Lett 110:223701

    Article  Google Scholar 

  24. Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/ MWCNT/ graphite nanoplate nanocomposites:efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Appl Mater Inter 5:4712–4724

    Article  CAS  Google Scholar 

  25. Zhang HM, Zhang GC, Li JT, Fan X, Jing ZX, Li JW, Shi XT (2017) Lightweight, multi-functional microcellular PMMA/ Fe3O4@ MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos Part A 100:128–138

    Article  CAS  Google Scholar 

  26. Sang G, Dong J, He X, Jiang J, Li J, Xu P, Ding Y (2019) Electromagnetic interference shielding performance of polyurethane composites: a comparative study of GNs-IL/Fe3O4 and MWCNTs-IL/Fe3O4 hybrid fillers. Compos Part B 164:467–475

    Article  CAS  Google Scholar 

  27. Liang C, Song P, Ma A, Shi X, Gu H, Wang L, Qiu H, Kong J, Gu J (2019) Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos Sci Technol 181:107683

    Article  Google Scholar 

  28. Munir A (2015) Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: a review. Adv Polym Technol 36:21617

    Google Scholar 

  29. Yu J, Lu W, Pei S, Gong K, Wang L, Meng L, Huang Y, Smith JP, Booksh KS, Li Q, Byun JH, Oh Y, Yan Y, Chou TW (2016) Omnidirectionally stretchable highperformance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 10(5):5204–5211

    Article  CAS  Google Scholar 

  30. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithiumion batteries. Adv Funct Mater 18(24):3941–3946

    Article  CAS  Google Scholar 

  31. Bayat M, Yang H, Ko FK, Michelson D, Mei A (2014) Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer 55:936–943

    Article  CAS  Google Scholar 

  32. Wu G, Liu S, Wu X, Ding X (2017) Core-shell structure of carbon nanotube nanocapsules reinforced poly(lactic acid) composites. J Appl Polym Sci 134:44919

    Google Scholar 

  33. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project of Provincial-level Scientific Research Platforms of Yancheng Polytechnic College (No. YGKF-201805), the Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (No. 2020CG014), the Postgraduate Education Innovation Project in Shanxi (No. 2020SY466), the Students Innovation and Entrepreneurship Training Program Project of Taiyuan University of Technology (No. 202085), the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (No. 18YJC760051), 2017 Shanxi Philosophy and Social Science Project (No. 201702) and the Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (PSSR) (No. 201803060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuqiang Liu or Gaihong Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, P., Yang, Y. et al. Influence of MWCNTs and nano-Fe3O4 on the properties and structure of MWCNTs/ Fe3O4/PLA composite film with electromagnetic interference shielding function. J Polym Res 27, 288 (2020). https://doi.org/10.1007/s10965-020-02234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02234-x

Keywords

Navigation