Skip to main content
Log in

Modified magnesium hydroxide encapsulated by melamine cyanurate in flame-retardant polyamide-6

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, a novel modified magnesium hydroxide (MH) was successfully prepared with γ-(2,3-epoxypropoxy)propyl trimethoxysilane (KH-560) via the wet process. The optimum modification conditions were obtained as follows: KH-560 dosage of 1.0 wt% at 80 °C for 2 h. The modified MH encapsulated by melamine cyanurate (MCA) at the mass ratio was 1:3. Using polyamide-6 (PA6) as matrix, MCA-MH as flame retardant, a series of flame-retardant PA6/MCA-MH composites were prepared by melt blending and injection molding. The flame retardancy, thermal property, and mechanical properties of PA6/MCA-MH composites were investigated. The investigation results showed that MCA-MH could effectively suppress the melt-dipping behavior and reinforce flame retardancy of PA6. PA6/MCA-MH composites successfully passed the vertical combustion (UL-94) V-0 rating and limiting oxygen index (LOI) as high as 32.5% with the incorporation of 20 wt% of MCA-MH. The residues of the PA6/MCA-MH composites were increased with the increasing MCA-MH. What’s more, the mechanical properties of the composites were also enhanced because of MCA-MH had better compatibility and dispersion in the PA6 matrix compared with MH. Therefore, PA6/MCA-MH composites with excellent flame retardancy while have maintained optimal mechanical properties can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sinitsin AN, Zuev VV (2016) Dielectric relaxation of fulleroid materials filled PA 6 composites and the study of its mechanical and tribological performance. Mater Chem Phys 176:152–160

    Article  CAS  Google Scholar 

  2. Paran SMR, Naderi G, Ghoreishy MHR (2017) Microstructure and mechanical properties of thermoplastic elastomer nanocomposites based on PA6/NBR/HNT. Polym Compos 38:451–461

    Article  Google Scholar 

  3. Butnaru I, Fern谩ndez-Ronco MP, Czech-Polak J, Heneczkowski M, Bruma M, Gaan S (2015) Effect of Meltable Triazine-DOPO additive on rheological, mechanical, and flammability properties of PA6. Polymers 7(8):1541–1563

    Article  CAS  Google Scholar 

  4. Monti M, Tsampas SA, Fernberg SP, Blomqvist P, Cuttica F, Fina A, Camino G (2015) Fire reaction of nanoclay-doped PA6 composites reinforced with continuous glass fibers and produced by commingling technique. Polym Degrad Stab 121:1–10

    Article  CAS  Google Scholar 

  5. Xiao X, Hu S, Zhai JG, Chen T, Mai Y (2016) Thermal properties and combustion behaviors of flame-retarded glass fiber-reinforced polyamide 6 with piperazine pyrophosphate and aluminum hypophosphite. J Therm Anal Calorim 125:175–185

    Article  CAS  Google Scholar 

  6. Tamura K, Ohyama S, Umeyama K, Kitazawa T, Yamagishi A (2016) Preparation and properties of halogen-free flame-retardant layered silicate-polyamide 66 nanocomposites. Appl Clay Sci 126:107–112

    Article  CAS  Google Scholar 

  7. Chen L, Wang YZ (2010) A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol 21(1):1–26

    Article  Google Scholar 

  8. Zhang J, Kong Q, Wang D et al (2018) Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem 6(15):6376–6386

    Article  CAS  Google Scholar 

  9. Zhang J, Kong Q, Yang L, Wang DY (2016) Few layered co(OH)2 ultrathin nanosheets based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem 18(10):3066–3074

    Article  CAS  Google Scholar 

  10. Kong Q, Sun Y, Zhang C, Guan H, Zhang J, Wang DY, Zhang F (2019) Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Compos Sci Technol 182:107748

    Article  Google Scholar 

  11. Kong Q, Wu T, Zhang H, Zhang Y, Zhang M, Si T, Zhang J (2017) Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci 146:230–237

    Article  CAS  Google Scholar 

  12. Kong Q, Wu H, Zhang H, Zhang X, Zhao W, Zhang J (2016) Effect of Fe-Montmorillonite on flammability behavior in polypropylene/magnesium hydroxide composites. J Nanosci Nanotechnol 16(8):8287–8293

    Article  CAS  Google Scholar 

  13. Zhang T, Liu W, Wang M, Liu P, Pan Y, Liu D (2016) Synergistic effect of an aromatic boronic acid derivative and magnesium hydroxide on the flame retardancy of epoxy resin. Polym Degrad Stab 130:257–263

    Article  CAS  Google Scholar 

  14. Zhang HY, Wang HQ, Wang HQ (2018) Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant. IOP Conference Series: Earth and Environmental Science. Vol. 170. No. 3

  15. Tang H, Chen K, Li X, Ao M, Guo X, Xue D (2017) Environment-friendly, flame retardant thermoplastic elastomer鈥搈agnesium hydroxide composites. Funct Mater Lett 10(04):1750042

    Article  Google Scholar 

  16. Yang Y, Niu M, Li J, Xue B, Dai J (2016) Preparation of carbon microspheres coated magnesium hydroxide and its application in polyethylene terephthalate as flame retardant. Polym Degrad Stab 134:1–9

    Article  CAS  Google Scholar 

  17. Guo J, Liu G, Guo Y, Tian L, Bao X, Zhang X, Yang B, Cui J (2019) Enhanced flame retardancy and smoke suppression of polypropylene by incorporating zinc oxide nanowires. J Polym Res 26(1)

  18. Dian L, Yuan L, Yan S, Qi W (2019) The properties of flame retardant and heat conduction polyamide66 based on melamine cyanurate/aluminum diethylphosphinate/grapheme. J Polym Res 26:216

    Article  Google Scholar 

  19. Huang H, Zhang K, Jiang J, Li J, Liu Y (2017) Highly dispersed melamine cyanurate flame-retardant epoxy resin composites. Polym Int 66(1):85–91

    Article  CAS  Google Scholar 

  20. Feng X, Wang X, Cai W, Hong N, Hu Y, Liew KM (2016) Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites. J Hazard Mater 320:252–264

    Article  CAS  Google Scholar 

  21. Li Y, Lin Y, Sha K, Xiao R (2017) Preparation and characterizations of flame retardant melamine cyanurate/polyamide 6 composite fibers via in situ polymerization. Text Res J 87(5):561–569

    Article  CAS  Google Scholar 

  22. Yang YX, Li YC, Wang P et al (2016) Effect of talc on flame retardant property of PA6/MCA composites. Plastics Science and Technology 1:24

    Google Scholar 

  23. Wang LY, Wei SS, Yiu C et al (2016) Preparation of polyamide 6/silica modified melamine Cyanurate non-halogen flame retardant Nanocomposites by in situ polymerization. J Nanosci Nanotechnol 16(9):9919–9924

    Article  Google Scholar 

  24. Lee IC, Ko JW, Park SH, Shin IS, Moon C, Kim SH, Kim YB, Kim JC (2016) Melamine and cyanuric acid co-exposure causes renal dysfunction and structural damage via MAPKs and mitochondrial signaling. Food Chem Toxicol 96:254–262

    Article  CAS  Google Scholar 

  25. Wang NY, Liu ZQ, Li LJ, Zhu LX (2014) Surface modification of magnesium hydroxide by A-174 Silane. Adv Mater Res 881-883:1424–1430

    Article  Google Scholar 

  26. Yang Z, Cai J, Zhou C, Zhou D, Chen B, Yang H, Cheng R (2010) Effects of the content of silane coupling agent KH-560 on the properties of LLDPE/magnesium hydroxide composites. J Appl Polym Sci 118(5):2634–2641

    Article  CAS  Google Scholar 

  27. You YS (2007) Surface modification of ultrafine magnesium Hydrozide powder. China Powder Science and Technology

  28. Asmarandei I, Fundueanu G, Cristea M et al (2013) Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. J Polym Res 20(11):1–13

    Article  CAS  Google Scholar 

  29. Cai J, Wirasaputra A, Zhu Y, Liu S, Zhou Y, Zhang C, Zhao J (2017) The flame retardancy and rheological properties of PA6/MCA modified by DOPO-based chain extender. RSC Adv 7(32):19593–19603

    Article  CAS  Google Scholar 

  30. Bhudolia SK, Joshi SC (2018) Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Compos Struct 203:696–708

    Article  Google Scholar 

  31. Ge H, Tang G, Hu WZ, Wang BB, Pan Y, Song L, Hu Y (2015) Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater 294:186–194

    Article  CAS  Google Scholar 

  32. Xu T, Huang XA (2010) TG-FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. J Anal Appl Pyrolysis 87(2):217–223

    Article  CAS  Google Scholar 

  33. Xie H, Lai X, Li H, Zeng X (2016) Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene. Polym Degrad Stab 130:68–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochi Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Xia, W., Guo, J. et al. Modified magnesium hydroxide encapsulated by melamine cyanurate in flame-retardant polyamide-6. J Polym Res 27, 258 (2020). https://doi.org/10.1007/s10965-020-02229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02229-8

Keywords

Navigation