Skip to main content
Log in

Epoxy-based ionic liquid towards multi-walled carbon nanotubes/polybutylene terephthalate composite with excellent dispersion and conductivity behaviors

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The Epoxy-based Ionic Liquid/carboxylated multi-walled carbon nanotubes/polybutylene terephthalate nanocomposites (EPIL/c-MWCNTs/PBT) were prepared through melt-blending method. Due to πcation-π interactions between EPIL and c-MWCNTs, and the reaction of a carboxyl group of PBT matrices with an epoxy group of EPIL, the c-MWCNTs displayed a homogeneous dispersion in the EPIL/c-MWCNTs/PBT, which could present better electrical properties than that of c-MWCNTs/PBT composites. SEM results presented that the compatibility between of c-MWCNTs and PBT had been improved due to the excellent dispersibility of c-MWCNTs in PBT matrix Meanwhile, the crystallization temperature of EPIL/c-MWCNTs/PBT also increased to 213.4 °C, higher than that of c-MWCNTs/PBT and pure PBT. Furthermore, the EPIL/c-MWCNTs/PBT nanocomposites showed excellent 3D conducting network and exhibited a low conductivity of percolation threshold when the loading of c-MWCNTs was only 0.7 wt%. The addition of EPIL and c-MWCNTs to PBT could effectively increase the dielectric constant and the uniformly dispersed c-MWCNT in low dielectric loss, which opened a new direction for the fabrication of EPIL/c-MWCNTs/polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chopra S, Deshmukh KA, Peshwe D (2017) Theoretical prediction of interfacial properties of PBT/CNT nanocomposites and its experimental evaluation. Mech Mater 109(6):11–17

    Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  3. Liu L, Yang ZH, Kong LB, Yin WY, Wang S (2012) Microwave tunable dielectric properties of multilayer CNT membranes for smart applications. Appl Phys A Mater Sci Process 108(4):843–848

    CAS  Google Scholar 

  4. Kazmierski TJ, Zhou D, Al-Hashimi BM, Ashburn P (2010) Efficient modeling of CNT transistors with ballistic and nonballistic effects for circuit simulation. IEEE Trans Nanotechnol 9(1):99–107

    Google Scholar 

  5. Arboleda L, Ares A, Abad MJ, Ferreira A, Costa P, Lanceros-Mendez S (2013) Piezoresistive response of carbon nanotubes-polyamides composites processed by extrusion. J Polym Res 20(12):1–11

    CAS  Google Scholar 

  6. Sivanjineyulu V, Chang YH, Chiu FC (2017) Characterization of carbon nanotube- and organoclay-filled polypropylene/poly(butylene succinate) blend-based nanocomposites with enhanced rigidity and electrical conductivity. J Polym Res 24(8):130

    Google Scholar 

  7. Meng DC, Ioannou J, Boccaccini AR (2009) Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering. J Mater Sci Mater Med 20(10):2139–2144

    CAS  PubMed  Google Scholar 

  8. De Menezes BRC, Ferreira FV, Silva BC, Simonetti EAN, Bastos TM, Cividanes LS, Thim GP (2018) Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J Mater Sci 53(9):14311–14327

    Google Scholar 

  9. Wang F, Wen ZY, Wu XW (2016) CNT@MnO2 hybrid as cathode catalysts toward long-life Lithium oxygen batteries. Chemistryselect 1(21):6749–6754

    CAS  Google Scholar 

  10. Ghosh D, Giri S, Mandal A, Das CK (2013) Supercapacitor based on H+ and Ni2+ co-doped polyaniline–MWCNTs nanocomposite: synthesis and electrochemical characterization. RSC Adv 3(29):11676–11685

    CAS  Google Scholar 

  11. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37(6):781–819

    CAS  Google Scholar 

  12. Xu Y, Li Q, Sun D, Zhang W, Chen GX (2012) A strategy to functionalize the carbon nanotubes and the Nanocomposites based on poly(L-lactide). Ind Eng Chem Res 51(42):13648–13654

    CAS  Google Scholar 

  13. Mohamed MG, Hsu KC, Kuo SW (2015) Bifunctional polybenzoxazine nanocomposites containing photo-crosslinkable coumarin units and pyrene units capable of dispersing single-walled carbon nanotubes. Polym Chem 6(13):2423–2433

    CAS  Google Scholar 

  14. Mallakpour S, Zadehnazari A (2013) A effect of amino acid-functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly(amide-imide) nanocomposites containing thiazole side unit. J Polym Res 20(7):192

    Google Scholar 

  15. Mallakpour S, Soltanian S (2015) A facile approach towards functionalization of MWCNTs with vitamin B2 for reinforcing of biodegradable and chiral poly(ester-imide) having L-phenylalanine linkages: morphological and thermal investigations. J Polym Res 22(9):183

    Google Scholar 

  16. Basiuk VA, Basiuk EV (2017) Complexation of free-base and 3d transition metal(II) phthalocyanines with fullerene C 60: a dispersion-corrected DFT study. Fullerenes Nanotubes Carb Nanostruct 25(7):410–416

    CAS  Google Scholar 

  17. Soares BG (2018) Ionic liquid: a smart approach for developing conducting polymer composites a review. J Mol Liq 262(15):8–18

    CAS  Google Scholar 

  18. Wang P, Zakeeruddin SM, Moser JE, Grätzel M (2003) A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J Phys Chem B 107(48):13280–13285

    CAS  Google Scholar 

  19. Tseng LC, Kuo M, Lee RH (2016) An imidazolium iodide–containing hyperbranched polymer ionic liquid that improves the performance of dye-sensitized solar cells. J Polym Res 23(8):157

    Google Scholar 

  20. Li M, Yang L, Fang S, Dong S (2011) Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature. J Membr Sci 366(1–2):245–250

    CAS  Google Scholar 

  21. Prasanna CMS, Suthanthiraraj SA (2016) Effective influences of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid on the ion transport properties of micro-porous zinc-ion conducting poly (vinyl chloride) / poly (ethyl methacrylate) blend-based polymer electrol. J Polym Res 23(7):140

    Google Scholar 

  22. Wang AL, Xu H, Zhou Q, Liu X, Li ZY, Gao R, Liu XF, Zhang LY (2017) Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries. J Solid State Electrochem 21(28):2355–2364

    CAS  Google Scholar 

  23. Xie CX, Li HL, Li L, Yu ST, Liu FS (2008) Synthesis of plasticizer ester using acid-functionalized ionic liquid as catalyst. J Hazard Mater 151(2–3):847–850

    CAS  PubMed  Google Scholar 

  24. Scott MP, Rahman M, Brazel CS (2003) Application of ionic liquids as low-volatility plasticizers for PMMA. Eur Polym J 39(10):1947–1953

    CAS  Google Scholar 

  25. Lu J, Yan F, Texter J (2008) Synthesis of plasticizer ester using acid-functionalized ionic liquid as catalyst. Prog Polym Sci 34(5):431–448

    Google Scholar 

  26. Lohse PW, Bartels N, Stoppa A, Buchner R, Lenzer T, Oum K (2012) Dielectric relaxation and ultrafast transient absorption spectroscopy of [C6mim](+)[Tf2N]()/acetonitrile mixtures. Phys Chem Chem Phys 14(10):3596–3603

    CAS  PubMed  Google Scholar 

  27. Moreno J, Dobryakov AL, Ioffe IN, Granovsky AA, Hecht S, Kovalenko SA (2015) Broadband transient absorption spectroscopy with 1- and 2-photon excitations: relaxation paths and cross sections of a triphenylamine dye in solution. J Chem Phys 143(2):024311

    CAS  PubMed  Google Scholar 

  28. Choi UH, Mittal A, PriceJr TL, Lee M, Gibson HW, Runt J, Colby RH (2015) Molecular volume effects on the dynamics of polymerized ionic liquids and their monomers. Electrochim Acta 175(1):55–61

    CAS  Google Scholar 

  29. Subramaniam K, Das A, Steinhauser D, Klüppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polym J 47(12):2234–2243

    CAS  Google Scholar 

  30. Lee J, Aida T (2011) “Bucky gels” for tailoring electroactive materials and devices: the composites of carbon materials with ionic liquids. Chem Commun 47(24):6757–6762

    CAS  Google Scholar 

  31. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based Bucky gel. Angew. Chem., Int. Ed. 44(16):2410–2413

    CAS  Google Scholar 

  32. Shang S, Zeng W, Tao XM (2011) High stretchable MWNTs/polyurethane conductive nanocomposites. J Mater Chem 21(20):7274–7270

    CAS  Google Scholar 

  33. He YX, Ma JZ, Zhang L, Zhang YQ (2008) Preparation and characterization of graft copolymer EVA-g-PU. Polym Plast Technol 47(12):1214–1219

    CAS  Google Scholar 

  34. Nanbu N, Sasaki Y, Kitamura F (2003) In situ FT-IR spectroscopic observation of a room-temperature molten salt | gold electrode interphase. Electrochem Commun 5(5):383–387

    CAS  Google Scholar 

  35. Gaillard F, Joly JP, Peillex E, Romand M (2000) FT-IR and temperature-programmed desorption (TPD) study of the adsorption of probe molecules used to model epoxy resin adhesion to chromium, Iron and stainless steel substrates. J Adhes 72(3–4):317–334

    CAS  Google Scholar 

  36. Kawahara H, Matsufuji S, Goto T, Okamoto Y, Ogura H, Kage H, Matsuno Y (2001) Epoxy resin/acrylic composite latexes: reactivity and stability of epoxy groups with carboxyl groups. Adv Powder Technol 12(4):521–532

    CAS  Google Scholar 

  37. Xing C, Zhao L, You J, Dong W, Cao X, Li Y (2012) Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116(28):8312–8320

    CAS  PubMed  Google Scholar 

  38. Zhao L, Li Y, Cao X, You J, Dong W (2012) Multifunctional role of an ionic liquid in melt-blended poly(methyl methacrylate)/multi-walled carbon nanotube nanocomposites. Nanotechnology 23(25):255702

    PubMed  Google Scholar 

  39. Cao XJ, Jin MY, Liang YY, Li YJ (2017) Synergistic effects of two types of ionic liquids on the dispersion of multiwalled carbon nanotubes in ethylene–vinyl acetate elastomer: preparation and characterization of flexible conductive composites. Polym Int 66(12):1708–1715

    CAS  Google Scholar 

  40. Guan J, Xing C, Wang Y, Li Y, Li J (2017) Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos Sci Technol 138(18):98–105

    CAS  Google Scholar 

  41. Huang CW, Mohamed MG, Zhu CY, Kuo SW (2016) Functional Supramolecular polypeptides involving π–π stacking and strong hydrogen-bonding interactions: a conformation study toward carbon nanotubes (CNTs) dispersion. Macromolecules 49(15):5374–5385

    CAS  Google Scholar 

  42. Song S, Shan X, Jiang SK, Lv X, Sun S, Li QM (2018) A facile strategy to enhance the dielectric and mechanical properties of MWCNTs/PVDF composites with the aid of MMA-co-GMA copolymer. Materials 11(3):347

    PubMed Central  Google Scholar 

  43. Han G, Wang Z, Liu K, Li S, Du X, Du W (2015) Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs. Mater Sci Eng A 628(25):350–357

    CAS  Google Scholar 

  44. Noto VD, Gliubizzi R, Negro E, Pace G (2007) Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. J Phys Chem B 110(49):24972–24986

    Google Scholar 

  45. Zare Y, Rhee KY (2017) A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Adv 7(55):34912–34921

    CAS  Google Scholar 

  46. Zhang S, Dokko K, Watanabe M (2015) Carbon materialization of ionic liquids: from solvents to materials. Mater Horiz 2(2):168–197

    CAS  Google Scholar 

  47. Kulkarni P, Nataraj SK, Balakrishna RG, Nagaraju DH, Reddy MV (2017) Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A 5(42):22040–22094

    CAS  Google Scholar 

  48. Mohamed MG, Kuo SW (2018) Functional silica and carbon Nanocomposites based on Polybenzoxazines. Macromol Chem Phys 220(1):1800306

    Google Scholar 

  49. Dedyk AI, Nenasheva EA, Kanareykin AD, Pavlova JV, Sinjukova OV, Karmanenko SF (2006) Tunability and leakage currents of (Ba, Sr)TiO3ferroelectric ceramics with various additives. J Electroceram 17(2–4):433–437

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No.51273025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhubao Shao or Shulin Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Liu, C., Wu, D. et al. Epoxy-based ionic liquid towards multi-walled carbon nanotubes/polybutylene terephthalate composite with excellent dispersion and conductivity behaviors. J Polym Res 27, 237 (2020). https://doi.org/10.1007/s10965-020-02224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02224-z

Keywords

Navigation