Skip to main content
Log in

Perylene diimide based low band gap copolymers: synthesis, characterization and their applications in perovskite solar cells

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, newly designed perylene diimide based polymers P1 and P2 were synthesized and were used as hole transporting materials in place of the more common spiro-OMeTAD in perovskite solar cells. The co-polymers P1-P2 were synthesized by Suzuki and direct arylation polymerizations of 2,9-bis(7-bromo-9,9-dioctyl-9H-fluoren-2-yl)anthra[2,1,9-def:6,5,10-def’]diisoquinoline-1,3,8,10(2H,9H)-tetrone M1 with 5,11-bis(2-hexyldecyl)-3,9-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,11-dihydoindolo[3,2-b]carbazole M2 and 3-octylthiophene M3, respectively. P1 and P2 exhibit broad absorption spectra in thin film and solution with the absorption extending from the ultraviolet to visible and near infrared region of the solar spectrum. The water contact angles of P1-P2 were determined to be 100.8° and 122.9°, respectively, showing good hydrophobicity for the synthesized copolymers. Both polymers show steady state photoluminescence quenching when blended with perovskite. Perovskite solar cell devices fabricated using P1-P2 in place of spiro-OMeTAD show power conversion efficiencies of 13.02% and 10.74%, respectively and manifest the potential of this class of materials as promising alternatives to conventionally used spiro-OMeTAD.

Table of Contents (TOC) Graphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Petrus ML, Johannes S, Cheng L, GT P, Nadja G, Peter M-B, Mukundan T, Thomas B, Sven H, Pablo D (2018) Capturing the Sun: a review of the challenges and perspectives of Perovskite solar cells. Adv Energy Mater 8:1703396

    Google Scholar 

  2. Ono LK, Park N-G, Zhu K, Huang W, Qi Y (2017) Perovskite solar cells—towards commercialization. ACS Energy Lett 2:1749–1751

    CAS  Google Scholar 

  3. NREL (2020) Best research-cell efficiency chart. Available at: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf. Accessed 6 April 2020

  4. Park N-G (2020) Research direction toward scalable, stable, and high efficiency Perovskite solar cells. Adv Energy Mater 10:1903106

    CAS  Google Scholar 

  5. Zhang F, Zhu K (2020) Additive engineering for efficient and stable Perovskite solar cells. Adv Energy Mater 10:1902579

    CAS  Google Scholar 

  6. Giorgi G, Yamashita K (2015) Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J Mater Chem A 3:8981–8991

    CAS  Google Scholar 

  7. Zhou D, Zhou T, Tian Y, Zhu X, Tu Y (2018) Perovskite-based solar cells: materials, methods, and future perspectives. J Nanomater 2018:15

    Google Scholar 

  8. Hawash Z, Ono LK, Raga SR, Lee MV, Qi Y (2015) Air-exposure induced dopant redistribution and energy level shifts in spin-coated Spiro-MeOTAD films. Chem Mater 27:562–569

    CAS  Google Scholar 

  9. Lee I, Yun JH, Son HJ, Kim T-S (2017) Accelerated degradation due to weakened adhesion from Li-TFSI additives in Perovskite solar cells. ACS Appl Mater Interfaces 9:7029–7035

    CAS  PubMed  Google Scholar 

  10. Huang L, Hu Z, Xu J, Zhang K, Zhang J, Zhang J, Zhu Y (2016) Efficient and stable planar perovskite solar cells with a non-hygroscopic small molecule oxidant doped hole transport layer. Electrochim Acta 196:328–336

    CAS  Google Scholar 

  11. Yu Z, Sun L (2018) Inorganic hole-transporting materials for Perovskite solar cells. Small Methods 2:1700280

    Google Scholar 

  12. Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Grätzel M, Seok SI (2013) Efficient inorganic–organic hybrid Perovskite solar cells based on Pyrene Arylamine derivatives as hole-transporting materials. J Am Chem Soc 135:19087–19090

    CAS  PubMed  Google Scholar 

  13. Krishnamoorthy T, Kunwu F, Boix PP, Li H, Koh TM, Leong WL, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar SG (2014) A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J Mater Chem A 2:6305–6309

    CAS  Google Scholar 

  14. Li H, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar SG, Grimsdale AC (2014) A simple 3,4-Ethylenedioxythiophene based hole-transporting material for Perovskite solar cells. Angew Chem Int Ed 53:4085–4088

    CAS  Google Scholar 

  15. Xu B, Sheibani E, Liu P, Zhang J, Tian H, Vlachopoulos N, Boschloo G, Kloo L, Hagfeldt A, Sun L (2014) Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and Perovskite solar cells. Adv Mater 26:6629–6634

    CAS  PubMed  Google Scholar 

  16. Park S, Heo JH, Cheon CH, Kim H, Im SH, Son HJ (2015) A [2,2]paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells. J Mater Chem A 3:24215–24220

    CAS  Google Scholar 

  17. Das J, Bhaskar Kanth Siram R, Cahen D, Rybtchinski B, Hodes G (2015) Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells. J Mater Chem A 3:20305–20312

    CAS  Google Scholar 

  18. Kozma E, Catellani M (2013) Perylene diimides based materials for organic solar cells. Dyes Pigments 98:160–179

    CAS  Google Scholar 

  19. Meng F, Liu K, Dai S, Shi J, Zhang H, Xu X, Li D, Zhan X (2017) A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar cells. Mater Chem Front 1:1079–1086

    CAS  Google Scholar 

  20. Kim SS, Bae S, Jo WH (2016) A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells. RSC Adv 6:19923–19927

    CAS  Google Scholar 

  21. Zhang H, Xue L, Han J, Fu YQ, Shen Y, Zhang Z, Li Y, Wang M (2016) New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer. J Mater Chem A 4:8724–8733

    CAS  Google Scholar 

  22. Karuppuswamy P, Hanmandlu C, Moorthy Boopathi K, Perumal P, C-c L, Chen Y-F, Chang Y-C, Wang P-C, Lai C-S, Chu C-W (2017) Solution-processable electron transport layer for efficient hybrid perovskite solar cells beyond fullerenes. Sol Energy Mater Sol Cells 169:78–85

    CAS  Google Scholar 

  23. Guo Q, Xu Y, Xiao B, Zhang B, Zhou E, Wang F, Bai Y, Hayat T, Alsaedi A, Tan Z (2017) Effect of energy alignment, Electron mobility, and film morphology of Perylene Diimide based polymers as Electron transport layer on the performance of Perovskite solar cells. ACS Appl Mater Interfaces 9:10983–10991

    CAS  PubMed  Google Scholar 

  24. Jiang K, Wu F, Yu H, Yao Y, Zhang G, Zhu L, Yan H (2018) A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells. J Mater Chem A 6:16868–16873

    CAS  Google Scholar 

  25. Meena S, Mohammad T, Dutta V, Jacob J (2018) Design and synthesis of N-substituted perylene diimide based low band gap polymers for organic solar cell applications. RSC Adv 8:30468–30480

    CAS  Google Scholar 

  26. Brian S. Furniss AJH, Peter W. G Smith, Austin R Tatchell (1989). R. Vogel’s textbook of practical organic chemistry. 5th edition edn. ELBS, Longman group, London,

  27. Meena S, Alam F, Dutta V, Jacob J (2017) Synthesis and photovoltaic device studies of azo-linked low-bandgap polymers. Polym Int 66:593–603

    CAS  Google Scholar 

  28. Rusu R-D, Schluter AD (2014) Progress in the Suzuki polycondensation of fluorene monomers. RSC Adv 4:57026–57034

    CAS  Google Scholar 

  29. Kaya E, Kurtay G, Korkmaz A (2020) Combined DFT-experimental investigation and preparation of two new Thiadiazole-based Bithiophene or Fluorene containing polymers via Suzuki-Miyaura reactions. J Polym Res 27:131

    CAS  Google Scholar 

  30. Negru OI, Grigoras M (2019) Synthesis and properties of copolyarylenes containing indolo[3,2-b]carbazole moieties in the backbone. J Polym Res 26:30

    Google Scholar 

  31. Pouliot J-R, Grenier F, Blaskovits JT, Beaupré S, Leclerc M (2016) Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem Rev 116:14225–14274

    CAS  PubMed  Google Scholar 

  32. Tomar M, Ashar AZ, Narayan KS, Müllen K, Jacob J (2016) Tuning the HOMO energy levels in quinoline and biquinoline based donor-acceptor polymers. J Polym Res 23:50

    Google Scholar 

  33. De Witte PAJ, Hernando J, Neuteboom EE, van Dijk EMHP, Meskers SCJ, Janssen RAJ, van Hulst NF, Nolte RJM, García-Parajó MF, Rowan AE (2006) Synthesis and characterization of long Perylenediimide polymer fibers: from bulk to the single-molecule level. J Phys Chem B 110:7803–7812

    PubMed  Google Scholar 

  34. Habisreutinger SN, McMeekin DP, Snaith HJ, Nicholas RJ (2016) Research update: strategies for improving the stability of perovskite solar cells. APL Mater 4:091503

    Google Scholar 

  35. Neuteboom EE, Meskers SCJ, Meijer EW, Janssen RAJ (2004) Photoluminescence of self-organized Perylene Bisimide polymers. Macromol Chem Phys 205:217–222

    CAS  Google Scholar 

  36. Yan P, Chowdhury A, Holman MW, Adams DM (2005) Self-organized Perylene Diimide Nanofibers. J Phys Chem B 109:724–730

    CAS  PubMed  Google Scholar 

  37. Baysec S, Akbasoglu Unlu N, Hacioglu SO, Arslan Udum Y, Cirpan A, Toppare L (2015) Electrochemical properties of Perylene Diimide (PDI) and Benzotriazole (Btz) bearing conjugated polymers to investigate the effect of π-bridge on electrochemical properties. J Macromol Sci Part A Pure Appl Chem 52:1–9

    CAS  Google Scholar 

  38. Roncali J (2007) Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol Rapid Commun 28:1761–1775

    CAS  Google Scholar 

  39. Khalid N, Shumail S, Siddiqi HM, Qureshi R, Ashraf Z (2020) Triphenylamine based redox-active, fluorescent polyamides: synthesis and photophysics. J Polym Res 27:51

    CAS  Google Scholar 

  40. Wang H-J, Tzeng J-Y, Chou C-W, Huang C-Y, Lee R-H, Jeng R-J (2013) Novel polythiophene derivatives functionalized with conjugated side-chain pendants comprising triphenylamine/carbazole moieties for photovoltaic cell applications. Polym Chem 4:506–519

    CAS  Google Scholar 

  41. Liu Y, Guo J, Luo T, Yue H, Tan R, Zhao X, Chen JK (2017) Synthesis and luminescence properties of long-chain (2,7-carbazolyl)-adamantane copolymers. J Polym Res 24:114

    Google Scholar 

  42. Xu T, Yu L (2014) How to design low bandgap polymers for highly efficient organic solar cells. Mater Today 17:11–15

    CAS  Google Scholar 

  43. Jiramitmongkon K, Chotsuwan C, Asawapirom U, Hirunsit P (2019) Cyclopentadithiophene and Diketo-pyrrolo-pyrrole fused rigid copolymer for high optical contrast electrochromic polymer. J Polym Res 27:17

    Google Scholar 

  44. Koyuncu S, Kus M, Demic S, Kaya İ, Ozdemir E, Icli S (2008) Electrochemical and optical properties of novel donor-acceptor thiophene-perylene-thiophene polymers. J Polym Sci, Part A: Polym Chem 46:1974–1989

    CAS  Google Scholar 

  45. Chen S, Liu Y, Qiu W, Sun X, Ma Y, Zhu D (2005) Oligothiophene-functionalized Perylene Bisimide system: synthesis, characterization, and electrochemical polymerization properties. Chem Mater 17:2208–2215

    CAS  Google Scholar 

  46. Mikroyannidis JA, Stylianakis MM, Sharma GD, Balraju P, Roy MS (2009) A novel alternating Phenylenevinylene copolymer with Perylene Bisimide units: synthesis, Photophysical, electrochemical, and photovoltaic properties. J Phys Chem C 113:7904–7912

    CAS  Google Scholar 

  47. Zhao X, Wang M (2018) Organic hole-transporting materials for efficient perovskite solar cells. Mater Today Energy 7:208–220

    Google Scholar 

  48. Yu Z, Sun L (2015) Recent Progress on hole-transporting materials for emerging Organometal halide Perovskite solar cells. Adv Energy Mater 5:1500213

    Google Scholar 

  49. Tong X, Lin F, Wu J, Wang ZM (2016) High performance Perovskite solar cells. Adv Sci 3:1500201

    Google Scholar 

  50. Ameen S, Rub MA, Kosa SA, Alamry KA, Akhtar MS, Shin H-S, Seo H-K, Asiri AM, Nazeeruddin MK (2016) Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem 9:10–27

    CAS  PubMed  Google Scholar 

  51. Qin P, Kast H, Nazeeruddin MK, Zakeeruddin SM, Mishra A, Bäuerle P, Grätzel M (2014) Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells. Energy Environ Sci 7:2981–2985

    CAS  Google Scholar 

  52. Liu F, Li H, Gu C, Fu H (2015) Effect of alkyl-chain branching position on nanoscale morphology and performance of all-polymer solar cells. RSC Adv 5:10072–10080

    CAS  Google Scholar 

  53. Bredas JL, Silbey R, Boudreaux DS, Chance RR (1983) Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J Am Chem Soc 105:6555–6559

    CAS  Google Scholar 

  54. Leonat L, Beatrice Gabriela S, Branzoi IV (2013) Cyclic voltammetry for energy levels estimation of organic materials. UPB Sci Bull, Series B: Chem and Mater Sci 75:111–118

    CAS  Google Scholar 

  55. Sonar P, Foong TRB, Singh SP, Li Y, Dodabalapur A (2012) A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chem Commun 48:8383–8385

    CAS  Google Scholar 

  56. Lohrman J, Zhang C, Zhang W, Ren S (2012) Semiconducting carbon nanotube and covalent organic polyhedron–C60 nanohybrids for light harvesting. Chem Commun 48:8377–8379

    CAS  Google Scholar 

  57. Admassie S, Inganäs O, Mammo W, Perzon E, Andersson MR (2006) Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synth Met 156:614–623

    CAS  Google Scholar 

  58. Alghamdi AAB, Imragaa A, Abdel-Halim ES, Iraqi A (2016) Synthesis and characterization of novel thiophene and carbazole-based polymers - optical and electrochemical characterization. Int J Electrochem Sci 11:5111–5127

    CAS  Google Scholar 

  59. Misra A, Kumar P, Srivastava R, Dhawan SK, Kamalasanan MN, Chandra S (2005) Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J Pure Ap Phy 43:921–925

    CAS  Google Scholar 

  60.  Alias@Yusof HN, Salleh H, Mohamad Isa MIN (2016) Thickness dependent on energy band gap and electrical conductivity of Undoped conjugated polymer thin films. Mater Sci Forum 846:620–625

  61. Zhang J, Xu B, Johansson MB, Vlachopoulos N, Boschloo G, Sun L, Johansson EMJ, Hagfeldt A (2016) Strategy to boost the efficiency of mixed-ion Perovskite solar cells: changing geometry of the hole transporting material. ACS Nano 10:6816–6825

    CAS  PubMed  Google Scholar 

  62. Molina-Ontoria A, Zimmermann I, Garcia-Benito I, Gratia P, Roldán-Carmona C, Aghazada S, Graetzel M, Nazeeruddin MK, Martín N (2016) Benzotrithiophene-based hole-transporting materials for 18.2% Perovskite solar cells. Angew Chem Int Ed 55:6270–6274

    CAS  Google Scholar 

  63. Förch R, Schönherr H, Jenkins ATA (2009) Surface design: applications in bioscience and nanotechnology. Wiley

  64. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in Perovskite solar cells. Nano Lett 14:5561–5568

    CAS  PubMed  Google Scholar 

  65. Liu K, Yao Y, Wang J, Zhu L, Sun M, Ren B, Xie L, Luo Y, Meng Q, Zhan X (2017) Spiro[fluorene-9,9’-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability. Mater Chem Front 1:100–110

    CAS  Google Scholar 

  66. Leijtens T, Giovenzana T, Habisreutinger SN, Tinkham JS, Noel NK, Kamino BA, Sadoughi G, Sellinger A, Snaith HJ (2016) Hydrophobic organic hole transporters for improved moisture resistance in metal halide Perovskite solar cells. ACS Appl Mater Interfaces 8:5981–5989

    CAS  PubMed  Google Scholar 

  67. Chen C, Cheng M, Liu P, Gao J, Kloo L, Sun L (2016) Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy 23:40–49

    CAS  Google Scholar 

  68. Schloemer TH, Christians JA, Luther JM, Sellinger A (2019) Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chem Sci 10:1904–1935

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

University Grant Commission, India highly acknowledged by author S.M. for awarding Teacher Research Fellowship under Faculty Improvement Program. Authors are thankful and acknowledging to Department of Science and Technology, India (Project no. SB/SI/OC-12/2013). Authors also want to thank to Nanoscale Research Facility, Central Research Facility and Department of Materials Science and Engineering, I.I.T. Delhi for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josemon Jacob.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

10965_2020_2212_MOESM1_ESM.pdf

†Electronic supplementary material (†ESM) (PDF 691 kb) The supplementary material file of this article includes synthesis of monomer M1 and their characterization details suc as 1H NMR, 13C NMR, MALDI-TOF MS spectra. 1H NMR spectra of P1 and P2 with extended aromatic regions, PL spectra with inset figure, water contact angle graphs and J-V curve without doping of HTMs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, S., Chhillar, P., Pathak, S. et al. Perylene diimide based low band gap copolymers: synthesis, characterization and their applications in perovskite solar cells. J Polym Res 27, 226 (2020). https://doi.org/10.1007/s10965-020-02212-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02212-3

Keywords

Navigation