Skip to main content
Log in

Rheological, mechanical and morphological properties of acrylonitrile butadiene styrene composite filled with sunflower seed (Helianthus annuus L.) husk flour

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of sunflower seed husk flour amount on the rheological, morphological and mechanical properties of acrylonitrile-butadiene-styrene (ABS) terpolymer was determined in current research. Sunflower seed husk flour was incorporated to pure ABS at various weight percentages (5, 10, 15 and 20 wt%). Tensile properties (strength, modulus and elongation at break), impact strength, flexural properties (strength, strain and modulus), morphological properties and melt flow index (MFI) were determined. It was found that sunflower seed husk flour was favourable for improving flexural and tensile modulus. Elongation at break, tensile strength, impact strength, flexural strain and flexural strength of ABS diminished with the addition of sunflower seed husk flour. However, the addition of sunflower seed husk flour caused an increment in MFI value in comparison to pure ABS. The more the amount of sunflower seed husk flour in ABS polymer was, the more the reduction in the impact strength, flexural strength and flexural strain were. Increasing sunflower seed husk flour contents in the composites increased flexural modulus and MFI. It was concluded that sunflower seed husk flour filled polymer composites were usable in applications where lower cost was desirable and some reduction in the mechanical properties were acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ali HQ, Raza MA, Westwood A, Ghauri FA, Asgar H (2019) Development and mechanical characterization of composites based on unsaturated polyester reinforced with maleated high oleic sunflower oil-treated cellulose fiber. Polym Compos 40:901–908

    Article  CAS  Google Scholar 

  2. Essabir H, Nekhlaoui S, Malha M, Bensalah MO, Arrakhiz FZ, Qaiss A, Bouhfid R (2013) Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Mat Des 51:225–230

    Article  CAS  Google Scholar 

  3. Liu W, Liu T, Liu H, Xin J, Zhang J, Muhidinov ZK, Liu L (2017) Properties of poly(butylene adipate-co-terephthalate) and sunflower head residue biocomposites. J Appl Polym Sci 134:44644

    Google Scholar 

  4. Food and Agricultural Organization of the United Nations (FAO), http://www.fao.org/faostat/en/#data/QC, 2019 [accessed May 2019]

  5. Demir G, Nemlioglu S, Yazgic U, Dogan EE, Bayat C (2005) Determination of some important emissions of sunflower oil production industrial wastes incineration. J Sci Ind Res 64:226–228

    CAS  Google Scholar 

  6. Salasinska K, Ryszkowska J (2015) The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fiber composites. Composite Interfaces 22:39–50

    Article  CAS  Google Scholar 

  7. Kaymakci A, Ayrilmis N, Gulec T (2013) Surface properties and hardness of polypropylene composites filled with sunflower stalk flour. BioResources 8:592–602

    Google Scholar 

  8. Ayrilmis N, Kaymakci A, Ozdemir F (2013) Sunflower seed cake as reinforcing filler in thermoplastic composites. J Appl Polym Sci 129:1170–1178

    Article  CAS  Google Scholar 

  9. Sui G, Fuqua MA, Ulven CA, Zhong WH (2009) A plant fiber reinforced polymer composite prepared by a twin-screw extruder. Bioresour Technol 100:1246–1251

    Article  CAS  Google Scholar 

  10. Kaymakci A, Ayrilmis N, Ozdemir F, Gulec T (2013) Utilization of sunflower stalk in manufacture of thermoplastic composite. J Polym Environ 21:1135–1142

    Article  CAS  Google Scholar 

  11. Barczewski M, Matykiewicz D, Piasecki A, Szostak M (2018) Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties. Composites Interfaces 25:287–299

    Article  CAS  Google Scholar 

  12. Fuqua MA, Chevali VS, Ulven CA (2013) Lignocellulosic byproducts as filler in polypropylene: comprehensive study on the effects of compatibilization and loading. J Appl Polym Sci 127:862–868

    Article  CAS  Google Scholar 

  13. Barczewski M, Salasinska K, Szulc J (2019) Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: a study into mechanical behavior related to structural and rheological properties. Polym Test 75:1–11

    Article  CAS  Google Scholar 

  14. Vold JL, Ulven CA, Chisholm BJ (2015) Torrefied biomass filled polyamide biocomposites: mechanical and physical property analysis. J Mater Sci 50:725–732

    Article  CAS  Google Scholar 

  15. ISO 527, Plastics - determination of tensile properties, International Organization for Standardization, Switzerland, 1997

  16. ISO 178:2010(E), Plastics - determination of flexural properties, International Organization for Standardization, Switzerland, 2010

  17. ISO 180:2000(E), Plastics - determination of izod impact strength, International Organization for Standardization, Switzerland, 2000

  18. ISO 1133:2005(E), Plastics - determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics, International Organization for Standardization, Switzerland, 2005

  19. Ayrilmis N, Kaymakci A, Ozdemir F (2013) Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. J Ind Eng Chem 19:908–914

    Article  CAS  Google Scholar 

  20. Muller M, Valasek P, Linda M, Petrasek S (2018) Exploitation of hazelnut (Corylus avellane) shell waste in the form of polymer-particle biocomposite. Scienta Agriculturae Bohemica 49:53–59

    Article  Google Scholar 

  21. Singh VK (2015) Mechanical behaviour of walnut (Juglans L.) shell particles reinforced bio-composite. Sci Eng Compos Mater 22:383–390

    Article  CAS  Google Scholar 

  22. Salasinska K, Barczewski M, Gorny R, Klozinski A (2018) Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym Bull 75:2511–2528

    Article  CAS  Google Scholar 

  23. Ismail H, Nizam JM, Abdul Khalil HPS (2001) The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Test 20:125–133

    Article  CAS  Google Scholar 

  24. Salasinska K, Ryszkowska J (2012) Natural fibre composites from polyethylene waste and hazelnut shell: dimensional stability, physical, mechanical and thermal properties. Compos Interfaces 19:321–332

    Article  CAS  Google Scholar 

  25. Garcia-Garcia D, Carbonell-Verdu A, Jorda-Vilaplana A, Balart R, Garcia-Sanoguera D (2016) Development and characterization of green composites from bio-based polyethylene and peanut shell. J Appl Polym Sci 133:43940

    Article  Google Scholar 

  26. Abdul Khalil HPS, Chow WC, Rozman HD, Ismail H, Ahmad MN, Kumar RN (2001) The effect of anhydride modification of sago starch on the tensile and water absorption properties of sago-filled linear low-density polyethylene (LLDPE). Polym-Plast Technol Eng 40:249–263

    Article  CAS  Google Scholar 

  27. Prabhakar MN, Shah AUR, Rao KC, Song J (2015) Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers Polym 16:1119–1124

    Article  CAS  Google Scholar 

  28. Chevali VS, Nerenz BA, Ulven CA, Kandare E (2015) Mechanical properties of hybrid lignocellulosic fiber-filled acrylonitrile butadiene styrene (ABS) biocomposites. Polym-Plast Technol Eng 54:375–382

    Article  CAS  Google Scholar 

  29. Pirayesh H, Khazaeian A (2012) Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Compos Part B 43:1475–1479

    Article  CAS  Google Scholar 

  30. Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind Crops Product 111:878–888

    Article  CAS  Google Scholar 

  31. Panthapulakkal S, Sain M (2006) Injection molded wheat straw and corn stem filled polypropylene composites. J Polym Environ 14:265–272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the author’s family. The author thanks to Mehmet Kuram for providing of natural fillers and Ahmet Nazim for helping SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Kuram.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuram, E. Rheological, mechanical and morphological properties of acrylonitrile butadiene styrene composite filled with sunflower seed (Helianthus annuus L.) husk flour. J Polym Res 27, 219 (2020). https://doi.org/10.1007/s10965-020-02211-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02211-4

Keywords

Navigation