Skip to main content
Log in

The thermal degradation mechanism and kinetic analysis of hydrogenated bisphenol-A polycarbonate

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hydrogenated bisphenol-A polycarbonate (PHBPA) was successfully synthesized from dimethyl carbonate (DMC) and hydrogenated bisphenol-A (HBPA) by the method of two-step polycondensation. The chemical structure and the molecular weight of PHBPA was identified by 1H-NMR spectra and gel permeation chromatography (GPC), respectively. In order to analyze the thermal degradation mechanism of PHBPA, a non-isothermal pyrolysis process was conducted and the violate products were detected using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography–mass spectrometry (GC-MS). There were some reactions occurred during the pyrolysis including decarboxylation, disproportionation of the C–H transfer and β–H transfer, and the Fries rearrangement. In addition, the well-known Flynne–Walle–Ozawa (FWO) and Coats–Redfern kinetic analysis methods were used to calculate the values of activation energy and pre-exponential factors. Furthermore, isothermal pyrolysis experiments were performed and revealed that the reaction of decarboxylation occurred at 225 °C. This decarboxylation suggests that the molecular chain of PHBPA does not easily grow to a high-molecular-weight polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Levchik SV, Weil ED (2005) Overview of recent developments in the flame retardancy of polycarbonates. Polym Int 54:981–998

    CAS  Google Scholar 

  2. Pang X, Ge X, Ji J, Liang W, Liu R, Chen X, Yin G, Ge J (2019) Improving oxygen permeability and thermostability of polycarbonate via copolymerization modification with bio-phenol polysiloxane. Polymers (Basel) 11:1302

    CAS  Google Scholar 

  3. Wen W, Guo J, Zhao X, Li X, Yang H, Chen JK (2018) Synthesis of an efficient S/N-based flame retardant and its application in polycarbonate. Polymers (Basel) 10:441

    Google Scholar 

  4. Poothanari MA, Xavier P, Bose S, Kalarikkal N, Komalan C, Thomas S (2019) Compatibilising action of multiwalled carbon nanotubes in polycarbonate/polypropylene (PC/PP) blends: phase morphology, viscoelastic phase separation, rheology and percolation. J Polym Res 26

  5. Jiang L, Zhou M, Ding Y, Zhou Y, Dan Y (2018) Aging induced ductile-brittle-ductile transition in bisphenol A polycarbonate. J Polym Res 25

  6. Feng J, Hao J, Du J, Yang R (2012) Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite. Polym Degrad Stab 97:605–614

    CAS  Google Scholar 

  7. Feng Y, Li Z, Wang Y, Chen W, Wang B, Liu C, Shen C (2019) Thermal degradation behavior and kinetics of 3D porous polycarbonate monoliths. Macromol Mater Eng 304:1800667

    Google Scholar 

  8. Lee LH (1964) Mechanisms of thermal degradation of phenolic condensation polymers. I. Studies on the thermal stability of polycarbonate. J. Polym. Sci. Part A: General Papers 2:2859–2873

    Google Scholar 

  9. Puglisi C, Samperi F, Carroccio S, Montaudo G (1999) MALDI− TOF investigation of polymer degradation. Pyrolysis of poly (bisphenol A carbonate). Macromolecules 32:8821–8828

    CAS  Google Scholar 

  10. Montaudo G, Puglisi C, Samperi F (1989) Thermal decomposition processes in polycarbonates. Polym Degrad Stab 26:285–304

    CAS  Google Scholar 

  11. Davis A, Golden J (1968) Thermal degradation of polycarbonate. J Chem Soc B: Physical Organic 45–47

  12. Puglisi C, Sturiale L, Montaudo G (1999) Thermal decomposition processes in aromatic polycarbonates investigated by mass spectrometry. Macromolecules 32:2194–2203

    CAS  Google Scholar 

  13. Jang BN, Wilkie CA (2004) A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab 86:419–430

    CAS  Google Scholar 

  14. Bozi J, Czégény Z, Mészáros E, Blazsó M (2007) Thermal decomposition of flame retarded polycarbonates. J Anal Appl Pyrolysis 79:337–345

    CAS  Google Scholar 

  15. Huang J, He C, Li X, Pan G, Tong H (2018) Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol A polycarbonate. Waste Manag 71:181–191

    CAS  PubMed  Google Scholar 

  16. Jang BN, Wilkie CA (2005) The thermal degradation of bisphenol A polycarbonate in air. Thermochim Acta 426:73–84

    CAS  Google Scholar 

  17. Jiang J, Wang Y, Luo Z, Qi T, Qiao Y, Zou M, Wang B (2019) Design and application of highly efficient flame retardants for polycarbonate combining the advantages of Cyclotriphosphazene and silicone oil. Polymers (Basel) 11:1155

    CAS  Google Scholar 

  18. Feng Y, Wang B, Wang F, Zhao Y, Liu C, Chen J, Shen C (2014) Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites. Polym Degrad Stab 107:129–138

    CAS  Google Scholar 

  19. Siddiqui MN, Redhwi HH, Antonakou EV, Achilias DS (2018) Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment. J Anal Appl Pyrolysis 132:123–133

    CAS  Google Scholar 

  20. Li G, Qin Y, Wang X, Zhao X, Wang F (2010) Study on the influence of metal residue on thermal degradation of poly(cyclohexene carbonate). J Polym Res 18:1177–1183

    Google Scholar 

  21. Janković B (2008) A kinetic study of the isothermal degradation process of Lexan® using the conventional and Weibull kinetic analysis. J Polym Res 16:213–230

    Google Scholar 

  22. Zhu W, Huang X, Li C, Xiao Y, Zhang D, Guan G (2011) High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: synthesis and characterization. Polym Int 60:1060–1067

    CAS  Google Scholar 

  23. Hu Y, Qiao L, Qin Y, Zhao X, Chen X, Wang X, Wang F (2009) Synthesis and stabilization of novel aliphatic polycarbonate from renewable resource. Macromolecules 42:9251–9254

    CAS  Google Scholar 

  24. Mespouille L, Coulembier O, Kawalec M, Dove AP, Dubois P (2014) Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Prog Polym Sci 39:1144–1164

    CAS  Google Scholar 

  25. Sun J, Birnbaum W, Anderski J, Picker MT, Mulac D, Langer K, Kuckling D (2018) Use of light-degradable aliphatic polycarbonate nanoparticles as drug carrier for photosensitizer. Biomacromolecules 19:4677–4690

    CAS  PubMed  Google Scholar 

  26. Durand P-L, Brège A, Chollet G, Grau E, Cramail H (2018) Simple and efficient approach toward photosensitive biobased aliphatic polycarbonate materials. ACS Macro Lett 7:250–254

    CAS  Google Scholar 

  27. Suyama T, Tokiwa Y (1997) Enzymatic degradation of an aliphatic polycarbonate, poly (tetramethylene carbonate). Enzym Microb Technol 20:122–126

    CAS  Google Scholar 

  28. Delbreilh L, Dargent E, Grenet J, Saiter JM, Bernès A, Lacabanne C (2007) Study of poly(bisphenol A carbonate) relaxation kinetics at the glass transition temperature. Eur Polym J 43:249–254

    CAS  Google Scholar 

  29. Liu C, Yu J, Sun X, Zhang J, He J (2003) Thermal degradation studies of cyclic olefin copolymers. Polym Degrad Stab 81:197–205

    CAS  Google Scholar 

  30. Tsai Y, Jheng L-C, Hung C-Y (2010) Synthesis, properties and enzymatic hydrolysis of biodegradable alicyclic/aliphatic copolyesters based on 1,3/1,4-cyclohexanedimethanol. Polym Degrad Stab 95:72–78

    CAS  Google Scholar 

  31. Zhu W, Zhou W, Li C, Xiao Y, Zhang D, Guan G, Wang D (2011) Synthesis, characterization and degradation of novel biodegradable poly(butylene-co-hexamethylene carbonate) Copolycarbonates. J Macromol Sci A 48:583–594

    CAS  Google Scholar 

  32. Zhu W, Li C, Zhang D, Guan G, Xiao Y, Zheng L (2012) Thermal degradation mechanism of poly(butylene carbonate). Polym Degrad Stab 97:1589–1595

    CAS  Google Scholar 

  33. Liu W, Zhu W, Li C, Guan G, Zhang D, Xiao Y, Zheng L (2015) Thermal degradation mechanism of poly(hexamethylene carbonate). Polym Degrad Stab 112:70–77

    CAS  Google Scholar 

  34. Yang TC-K, Lin SS-Y, Chuang T-H (2002) Kinetic analysis of the thermal oxidation of metallocene cyclic olefin copolymer (mCOC)/TiO2 composites by FTIR microscopy and thermogravimetry (TG). Polym Degrad Stab 78:525–532

    CAS  Google Scholar 

  35. Liu F, Qiu J, Wang J, Zhang J, Na H, Zhu J (2016) Role of cis-1,4-cyclohexanedicarboxylic acid in the regulation of the structure and properties of a poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) copolymer. RSC Adv 6:65889–65897

    CAS  Google Scholar 

  36. Brunelle DJ, Jang T (2006) Optimization of poly(1,4-cyclohexylidene cyclohexane-1,4-dicarboxylate) (PCCD) preparation for increased crystallinity. Polymer 47:4094–4104

    CAS  Google Scholar 

  37. Tsai Y, Jheng L-C, Hung C-Y (2010) Synthesis, properties and enzymatic hydrolysis of biodegradable alicyclic/aliphatic copolyesters based on 1,3/1,4-cyclohexanedimethanol. Polym Degrad Stab 95:72–78

    CAS  Google Scholar 

  38. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532

    CAS  Google Scholar 

  39. Doyle C (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642

    CAS  Google Scholar 

  40. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B: Polym Lett 4:323–328

    CAS  Google Scholar 

  41. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    CAS  Google Scholar 

  42. Apaydin-Varol E, Polat S, Putun A (2014) Pyrolysis kinetics and thermal decomposition behavior of polycarbonate – a TGA-FTIR study. Therm Sci 18:833–842

    Google Scholar 

  43. Coats AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    CAS  Google Scholar 

  44. Abe H (2006) Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s. Macromol Biosci 6:469–486

    CAS  PubMed  Google Scholar 

  45. Abe H, Takahashi N, Kim KJ, Mochizuki M, Doi Y (2004) Effects of residual zinc compounds and chain-end structure on thermal degradation of poly(epsilon-caprolactone). Biomacromolecules 5:1480–1488

    CAS  PubMed  Google Scholar 

  46. Persenaire O, Alexandre M, Degée P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly (ε-caprolactone). Biomacromolecules 2:288–294

    CAS  PubMed  Google Scholar 

  47. Abate R, Ballistreri A, Montaudo G, Impallomeni G (1994) Thermal degradation of microbial poly (4-hydroxybutyrate). Macromolecules 27:332–336

    CAS  Google Scholar 

  48. Haba O, Itakura I, Ueda M, Kuze S (1999) Synthesis of polycarbonate from dimethyl carbonate and bisphenol-A through a non-phosgene process. J Polym Sci Part A: Polym Chem 37:2087–2093

    CAS  Google Scholar 

  49. Li Q, Zhu W, Li C, Guan G, Zhang D, Xiao Y, Zheng L (2013) A non-phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: synthesis, characterization, and properties. J Polym Sci Part A: Polym Chem 51:1387–1397

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Ministry of Science and Technology of the Republic of China (MOST 109-3116-F-006-015-CC1 and MOST 108-2221-E-006-001-) is gratefully acknowledged. The authors also gratefully acknowledge the use of Bruker Avance 600NMR Spectrometer equipment belonging to the Instrument Center of National Cheng Kung University, and the use of TGA-GC/MS equipment belonging to the Instrument Center of National Tsing Hua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuh-Yung Chen.

Ethics declarations

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YH., Wang, CC. & Chen, CY. The thermal degradation mechanism and kinetic analysis of hydrogenated bisphenol-A polycarbonate. J Polym Res 27, 246 (2020). https://doi.org/10.1007/s10965-020-02204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02204-3

Keywords

Navigation