Skip to main content
Log in

Poly (ethylene 2,5-furandicarboxylate) ionomers with enhanced liquid water sorption and oxidative degradation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Aliphatic-sulfonated polyesters based on 2,5 FDCA, such as poly(ethylene 2,5-furandicarboxylate)-co-(ethylene sodiosulfonate succinate) or 2,5-PEF-co-PESs were prepared by a melt step-growth polymerization of 2,5-FDCA and Na-DMSS with ethylene glycol. These copolyesters were characterized by 1H-NMR, DSC and TGA. The degree of randomness determined by 1H-NMR is less than one, thus indicating that these copolyesters have a character to block. All copolyesters were amorphous, having glass transition temperatures decreasing with the content of ionic units. The thermal stability of 2,5-PEF-co-PESs was slightly reduced by the incorporation of these units. The liquid water sorption mechanism was also discussed as a function of the composition of the copolymer and the predominant role of the content of sulfonated groups on liquid water uptake was highlighted. Finally, oxidative degradation has again supported the role of sulfonated units, whereas hydrolytic degradation was not influenced by the concentration of sulfonated groups. By leveraging on their characteristics, 2,5-PEF-co-PESs copolyesters may be can serve as attractive and innovative bio-polymers for practical applications such as textile and membrane…

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The figures used to support the findings of this study are included within the article.

References

  1. Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR, Silvestre AJD (2014) The quest for sustainable polyesters – insights into the future. Polym Chem 5:3119–3141. https://doi.org/10.1039/C3PY01213A

    Article  CAS  Google Scholar 

  2. Trovatti E, Gonçalves IG, Carvalho AJ, Gandini A (2020) The contribution of bisfurfurylamine to the development and properties of polyureas. Polym Int. https://doi.org/10.1002/pi.6003

  3. Chuang P-L, Nien Y-H (2019) Synthesis and characterization of maleic anhydride grafted SEBS modified with ethanolamine, 2-amino-2-methyl-1-propanol or glycerine. J Polym Res 26:66. https://doi.org/10.1007/s10965-019-1723-7

    Article  CAS  Google Scholar 

  4. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter GJM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983. https://doi.org/10.1039/C5PY00686D

    Article  CAS  Google Scholar 

  5. Thiyagarajan S, Pukin A, van Haveren J, Lutz M, van Es DS (2013) Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Adv 3:15678–15686. https://doi.org/10.1039/C3RA42457J

    Article  CAS  Google Scholar 

  6. Cousin T, Galy J, Rousseau A, Dupuy J (2018) Synthesis and properties of polyamides from 2,5-furandicarboxylic acid. J Appl Polym Sci 135:45901. https://doi.org/10.1002/app.45901

    Article  CAS  Google Scholar 

  7. Chebbi Y, Kasmi N, Majdoub M, Cerruti P, Scarinzi G, Malinconico M, Dal Poggetto G, Papageorgiou GZ, Bikiaris DN (2019) Synthesis, characterization, and biodegradability of novel fully biobased poly(decamethylene-co-isosorbide 2,5-furandicarboxylate) Copolyesters with enhanced mechanical properties. ACS Sustain Chem Eng 7:5501–5514. https://doi.org/10.1021/acssuschemeng.8b06796

    Article  CAS  Google Scholar 

  8. Papadopoulos L, Magaziotis A, Nerantzaki M, Terzopoulou Z, Papageorgiou GZ, Bikiaris DN (2018) Synthesis and characterization of novel poly(ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polym Degrad Stab 156:32–42. https://doi.org/10.1016/j.polymdegradstab.2018.08.002

    Article  CAS  Google Scholar 

  9. Cai X, Yang X, Zhang H, Wang G (2018) Aliphatic-aromatic poly(carbonate-co-ester)s containing biobased furan monomer: synthesis and thermo-mechanical properties. Polymer 134:63–70. https://doi.org/10.1016/j.polymer.2017.11.058

    Article  CAS  Google Scholar 

  10. Araujo CF, Nolasco MM, Ribeiro-Claro PJA, Rudić S, Silvestre AJD, Vaz PD, Sousa AF (2018) Inside PEF: chain conformation and dynamics in crystalline and amorphous domains. Macromolecules 51:3515–3526. https://doi.org/10.1021/acs.macromol.8b00192

    Article  CAS  Google Scholar 

  11. Matos M, Sousa AF, Fonseca AC, Freire CSR, Coelho JFJ, Silvestre AJD (2014) A new generation of furanic copolyesters with enhanced degradability: poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) copolyesters. Macromol Chem Phys 215:2175–2184. https://doi.org/10.1002/macp.201400175

    Article  CAS  Google Scholar 

  12. Hbaieb S, Kammoun W, Delaite C, Abid M, Abid S, el Gharbi R (2015) New Copolyesters containing aliphatic and bio-based Furanic units by bulk Copolycondensation. J Macromol Sci A 52:365–373. https://doi.org/10.1080/10601325.2015.1018807

    Article  CAS  Google Scholar 

  13. Gomes M, Gandini A, Silvestre AJD, Reis B (2011) Synthesis and characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols. J Polym Sci A Polym Chem 49:3759–3768. https://doi.org/10.1002/pola.24812

    Article  CAS  Google Scholar 

  14. Jiang M, Liu Q, Zhang Q, Ye C, Zhou G (2012) A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J Polym Sci A Polym Chem 50:1026–1036. https://doi.org/10.1002/pola.25859

    Article  CAS  Google Scholar 

  15. Knoop RJI, Vogelzang W, van Haveren J, van Es DS (2013) High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J Polym Sci A Polym Chem 51:4191–4199. https://doi.org/10.1002/pola.26833

    Article  CAS  Google Scholar 

  16. Gandini A, Silvestre AJD, Neto CP, Sousa AF, Gomes M (2009) The furan counterpart of poly(ethylene terephthalate): an alternative material based on renewable resources. J Polym Sci A Polym Chem 47:295–298. https://doi.org/10.1002/pola.23130

    Article  CAS  Google Scholar 

  17. Zhu J, Cai J, Xie W, Chen PH, Gazzano M, Scandola M, Gross RA (2013) Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure. Macromolecules 46:796–804. https://doi.org/10.1021/ma3023298

    Article  CAS  Google Scholar 

  18. Ma J, Yu X, Xu J, Pang Y (2012) Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate). Polymer 53:4145–4151. https://doi.org/10.1016/j.polymer.2012.07.022

    Article  CAS  Google Scholar 

  19. Carman H, Killman J, Crawford E, Jenkins J (2013) Polyester compositions containing furandicarboxylic acid or an Ester thereof and 2,2,4,4-Tetramethyl-1,3.-Cyclobutanediol

  20. Storbeck R, Ballauff M (1993) Synthesis and properties of polyesters based on 2,5-furandicarboxylic acid and 1,4:3,6-dianhydrohexitols. Polymer 34:5003–5006. https://doi.org/10.1016/0032-3861(93)90037-B

    Article  CAS  Google Scholar 

  21. Gaddour M, Bougarech A, Abid M, Abid S (2019) Biobased Furano-pyridinic copolyamide-imides preparation, characterization and degradation study. J Polym Res 26:74. https://doi.org/10.1007/s10965-019-1739-z

    Article  CAS  Google Scholar 

  22. Zhou W, Wang X, Yang B, Xu Y, Zhang W, Zhang Y, Ji J (2013) Synthesis, physical properties and enzymatic degradation of bio-based poly(butylene adipate-co-butylene furandicarboxylate) copolyesters. Polym Degrad Stab 98:2177–2183. https://doi.org/10.1016/j.polymdegradstab.2013.08.025

    Article  CAS  Google Scholar 

  23. Jacquel N, Saint-Loup R, Pascault J-P, Rousseau A, Fenouillot F (2015) Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer 59:234–242. https://doi.org/10.1016/j.polymer.2014.12.021

    Article  CAS  Google Scholar 

  24. Wu B, Xu Y, Bu Z, Wu L, Li BG, Dubois P (2014) Biobased poly(butylene 2,5-furandicarboxylate) and poly(butylene adipate-co-butylene 2,5-furandicarboxylate)s: from synthesis using highly purified 2,5-furandicarboxylic acid to thermo-mechanical properties. Polymer 55:3648–3655. https://doi.org/10.1016/j.polymer.2014.06.052

    Article  CAS  Google Scholar 

  25. Wu L, Mincheva R, Xu Y, Raquez JM, Dubois P (2012) High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties. Biomacromolecules 13:2973–2981. https://doi.org/10.1021/bm301044f

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Liu X, Zhu J, Jiang Y (2017) Copolyesters based on 2,5-Furandicarboxylic acid (FDCA): effect of 2,2,4,4-Tetramethyl-1,3-Cyclobutanediol units on their properties. Polymers 9:305. https://doi.org/10.3390/polym9090305

    Article  CAS  PubMed Central  Google Scholar 

  27. Guo X-Y, Gu L-X, Feng X-X (2002) The glass transition, crystallization, and melting characteristics of a class of polyester ionomers. J Appl Polym Sci 86:3660–3666. https://doi.org/10.1002/app.11313

    Article  CAS  Google Scholar 

  28. Chisholm BJ, Moore RB, Barber G, Khouri F, Hempstead A, Larsen M, Olson E, Kelley J, Balch G, Caraher J (2002) Nanocomposites derived from sulfonated poly(butylene terephthalate). Macromolecules 35:5508–5516. https://doi.org/10.1021/ma012224n

    Article  CAS  Google Scholar 

  29. Chisholm BJ, Sisti L, Soloveichik S, Gillette G (2003) Hydrolytic stability of sulfonated poly(butylene terephthalate). Polymer 44:1903–1910. https://doi.org/10.1016/S0032-3861(02)00932-1

    Article  CAS  Google Scholar 

  30. Ishida K, Han S-I, Inoue Y, Im S-S (2005) Novel poly(butylene succinate)-based ionomers with sulfonated succinate units: synthesis, morphology, and the unique nucleation effect on crystallization. Macromol Chem Phys 206:1028–1034. https://doi.org/10.1002/macp.200400474

    Article  CAS  Google Scholar 

  31. Colonna M, Berti C, Binassi E, Fiorini M, Karanam S, Brunelle DJ (2010) Nanocomposite of montmorillonite with telechelic sulfonated poly(butylene terephthalate): effect of ionic groups on clay dispersion, mechanical and thermal properties. Eur Polym J 46:918–927. https://doi.org/10.1016/j.eurpolymj.2010.02.003

    Article  CAS  Google Scholar 

  32. Bautista M, de Ilarduya AM, Alla A, Muñoz-Guerra S (2013) Sulfonated poly(hexamethylene terephthalate) copolyesters: enhanced thermal and mechanical properties. J Appl Polym Sci 129:3527–3535. https://doi.org/10.1002/app.39108

    Article  CAS  Google Scholar 

  33. Bougarech A, Abid M, Gouanvé F, Espuche E, Abid S, el Gharbi R, Fleury E (2013) Synthesis, characterization and water sorption study of new biobased (furanic-sulfonated) copolyesters. Polymer 54:5482–5489. https://doi.org/10.1016/j.polymer.2013.07.072

    Article  CAS  Google Scholar 

  34. Bougarech A, Abid M, DaCruz-Boisson F, Abid S, el Gharbi R, Fleury E (2014) Modulation of furanic-sulfonated isophthalic copolyesters properties through diols units control. Eur Polym J 58:207–217. https://doi.org/10.1016/j.eurpolymj.2014.06.018

    Article  CAS  Google Scholar 

  35. Bautista M, De Ilarduya AM, Alla A, Muñoz-Guerra S (2015) Poly(butylene succinate) ionomers with enhanced Hydrodegradability. Polymers 7:1232–1247. https://doi.org/10.3390/polym7071232

    Article  CAS  Google Scholar 

  36. Kacem YH, Bougarech A, Abid S et al (2019) Fully biobased aliphatic anionic oligoesters: synthesis and properties. In: International Journal of Polymer Science. https://www.hindawi.com/journals/ijps/2019/3186202/. Accessed 4 Apr 2020

  37. Dönmez G, Okutan M, Deligöz H (2019) Blend membranes of sulfonated poly (ether ether ketone) and thermoplastic poly (urethane) for fuel cells. J Polym Res 26:133. https://doi.org/10.1007/s10965-019-1792-7

    Article  CAS  Google Scholar 

  38. He Z, Zhang Z, Bi S (2019) Long-range crystal alignment with polymer additive for organic thin film transistors. J Polym Res 26:1–8. https://doi.org/10.1007/s10965-019-1842-1

    Article  CAS  Google Scholar 

  39. Asare-Yeboah K, Bi S, He Z, Li D (2016) Temperature gradient controlled crystal growth from TIPS pentacene-poly(α-methyl styrene) blends for improving performance of organic thin film transistors. Org Electron 32:195–199. https://doi.org/10.1016/j.orgel.2016.02.028

    Article  CAS  Google Scholar 

  40. Wang X, Wang L, Li H, Tang X, Chang FC (2000) Syntheses of poly(ethylene oxide) polyurethane ionomers. J Appl Polym Sci 77:184–188. https://doi.org/10.1002/(SICI)1097-4628(20000705)77:1<184::AID-APP24>3.0.CO;2-8

    Article  CAS  Google Scholar 

  41. Gaona O, Kint DPR, Martínez de Ilarduya A et al (2003) Preparation and hydrolytic degradation of sulfonated poly(ethylene terephthalate) copolymers. Polymer 44:7281–7289. https://doi.org/10.1016/j.polymer.2003.09.044

    Article  CAS  Google Scholar 

  42. Yamadera R, Murano M (1967) The determination of randomness in copolyesters by high resolution nuclear magnetic resonance. J Polym Sci A-1 Polym Chem 5:2259–2268. https://doi.org/10.1002/pol.1967.150050905

    Article  CAS  Google Scholar 

  43. Feng Y, Li C (2006) Study on oxidative degradation behaviors of polyesterurethane network. Polym Degrad Stab 91:1711–1716. https://doi.org/10.1016/j.polymdegradstab.2005.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Bougarech.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougarech, A., Abid, S. & Abid, M. Poly (ethylene 2,5-furandicarboxylate) ionomers with enhanced liquid water sorption and oxidative degradation. J Polym Res 27, 217 (2020). https://doi.org/10.1007/s10965-020-02194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02194-2

Keywords

Navigation