Skip to main content
Log in

Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermal management has developed into a severe issue with the evolution of electronics. The construction of effectively thermal conduction pathways in the matrix is crucial for highly thermal conductive composites. In this work, a unique thermal conductive channel in the epoxy matrix had been established with hybridizing hexagonal boron nitride (BN) sheets and aluminum nitride (AlN) particles through a solution mixture and hot-pressing method. Synergetic enhancement of thermal conductivity was observed between BN and AlN fillers owing to the better dispersion of hybrid fillers, which created more pathways for phonon transport. With 40 vol% hybrid BN-AlN filler contents, the thermal conductivity of EP composite reached 2.4 Wm−1 K−1, eightfold increasing over the pristine epoxy matrix and two times to that of single BN or AlN filling composite. Moreover, the thermal conductivity of hybrid composite was further improved by more than 10% through the surface treatment of fillers with silane couple agents owing to the enhancement of interaction in composites. This study is of critical importance for composites used in electronics and electric equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

Data availability

We declared that materials described in the manuscript, including all relevant raw data, will be freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. Chen J, Huang X-Y, Zhu Y-K, Jiang P-K (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27(5):1604754

    Google Scholar 

  2. Wang X-W, Wu P-Y (2017) Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene-microsphere and boron nitride nanosheet. ACS Appl Mater Interfaces 9(23):19934–19944

    CAS  PubMed  Google Scholar 

  3. Ma T-B, Zhao Y, Ruan K, Liu X, Zhang J, Guo Y-Q, Yang X, Kong J, Gu J-W (2020) Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid Nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces 12(1):1677–1686

    CAS  PubMed  Google Scholar 

  4. Zeng X, Sun J, Yao Y, Sun R, Xu J-B, Wong C-P (2017) A combination of boron nitride nanotubes and cellulose Nanofibers for the preparation of a Nanocomposite with high thermal conductivity. ACS Nano 11(5):5167–5178

    CAS  PubMed  Google Scholar 

  5. Loeblein M, Tsang SH, Pawlik M, Phua EJ, Yong H, Zhang X-W, Gan C-L, Teo EH (2017) High-density 3D-boron nitride and 3D-Graphene for high-performance Nano-thermal Interface material. ACS Nano 11(2):2033–2044

    CAS  PubMed  Google Scholar 

  6. Wang Z-G, Gong F, Yu W-C, Huang Y-F, Zhu L, Lei J, Xu J-Z, Li Z-M (2018) Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Compos Sci Technol 162:7–13

    CAS  Google Scholar 

  7. Shen C-X, Wang H, Zhang T-X, Zeng Y (2019) Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites. Journal of Materials Science & Technology 35(1):36–43

    Google Scholar 

  8. Wen D, Yu J, Liu Z, Yi W, Song Y, Lyu J, Hua B, Nishimura K, Nan J (2015) Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Compos A: Appl Sci Manuf 76:73–81

    Google Scholar 

  9. Wei L, Wei F, Huang H (2016) High-performance epoxy resin/silica coated flake graphite composites for thermal conductivity and electrical insulation. Journal of Materials Science Materials in Electronics 27(6):6364–6370

    Google Scholar 

  10. Chen J, Huang X-Y, Sun B, Wang Y-X, Zhu Y-K, Jiang P-K (2017) Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal Interface materials. ACS Appl Mater Interfaces 9(36):30909–30917

    CAS  PubMed  Google Scholar 

  11. Zhou W-Y, Ying G, Tu L-T, Li X, Zhou W, Cai J-T, Zhang Y-T, Zhou A-N (2016) Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. Journal of Alloys & Compounds 693:1–8

    Google Scholar 

  12. Tang L, He M-K, Na X-Y, Guan X-F, Zhang R-H, Zhang J-L, Gu J-W (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Composites Communications 16:5–10

    Google Scholar 

  13. Singh V, Bougher TL, Weathers A, Ye C, Bi K, Pettes MT, Mcmenamin SA, Wei L, Resler DP, Gattuso TR (2014) Corrigendum: high thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol 9(7):384–390

    CAS  PubMed  Google Scholar 

  14. Dogan UA, Ozkul MH (2015) The effect of cement type on long-term transport properties of self-compacting concretes. Construction & Building Materials 96:641–647

    Google Scholar 

  15. Ricardo AO, Esmeralda GVA, Gustavo SA, Guadalupe MP, Omar AB (2018) Photocurable shape-memory polyether-polythioether/graphene nanocomposites and the study of their thermal conductivity. J Polym Res 25(7):160

    Google Scholar 

  16. Zhang Y-X, Min Z, Zhang J-X, Qian S, Li J-F, Li H, Lin B, Yu M-Y, Chen S-G, Guo Z (2018) Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride. J Polym Res 25(5):130

    Google Scholar 

  17. Yao Y, Zeng X, Sun R, Xu J-B, Wong C-P (2016) Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering. ACS Appl Mater Interfaces 8(24):15645–15653

    CAS  PubMed  Google Scholar 

  18. Wang G-L, Wang C-D, Zhao J-C, Wang G-Z, Park CB, Zhao G-Q (2017) Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale 9(18):5996–6009

    CAS  PubMed  Google Scholar 

  19. Ren P-G, Si X-H, Sun Z-F, Ren F, Pei L, Hou S-Y (2016) Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure. J Polym Res 23(2):21

    Google Scholar 

  20. Zhang X-M, Zhang J-J, Li C-H, Wang J-F, Xia LC, Xu F, Zhang X-L, Wu H, Guo S-Y (2017) Endowing the high efficiency thermally conductive and electrically insulating composites with excellent antistatic property through selectively multilayered distribution of diverse functional fillers. Chem Eng J 328:609–618

    CAS  Google Scholar 

  21. Zeng X-L, Ye L, Yu S-H, Li H, Sun R, Xu J-B, Wong CP (2015) Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 7(15):6774–6781

    CAS  PubMed  Google Scholar 

  22. Chen H-Y, Ginzburg VV, Jian Y, Yang Y-F, Wei L, Yan H, Du L-B, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    CAS  Google Scholar 

  23. Yang X-T, Fan S-G, Li Y, Guo Y-Q, Li Y-G, Ruan K-P, Zhang S-M, Zhang J-L, Kong J, Gu J-W (2020) Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos A: Appl Sci Manuf 128:105670

    Google Scholar 

  24. Song W-L, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, Sun Y-P (2012) Polymer/boron nitride Nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed 51(26):6498–6501

    CAS  Google Scholar 

  25. Mora A, Fei H, Lubineau G (2018) Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles. Modelling & Simulation in Materials Science & Engineering 26(3):035010

    Google Scholar 

  26. Paszkiewicz S, Szymczyk A, Pawlikowska D, Subocz J, Zenker M, Masztak R (2018) Electrically and thermally conductive low density polyethylene-based Nanocomposites reinforced by MWCNT or hybrid MWCNT/Graphene Nanoplatelets with improved thermo-oxidative stability. Nanomaterials 8(4):264

    PubMed Central  Google Scholar 

  27. Yang X-T, Guo Y-Q, Han Y-X, Li Y, Ma T-B, Chen M-J, Kong J, Zhu J-H, Gu J-W (2019) Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos Part B 175:107070

    Google Scholar 

  28. Ribeiro H, Trigueiro JPC, Owuor PS, Machado LD, Woellner CF, Pedrotti JJ, Jaques YM, Kosolwattana S, Chipara A, Silva WM, Silva CJR, Galvão DS, Chopra N, Odeh IN, Tiwary CS, Silva GG, Ajayan PM (2018) Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Compos Sci Technol 159:103–110

    CAS  Google Scholar 

  29. Hutchinson JM, Roman F, Cortes P, Calventus Y (2017) Epoxy composites filled with boron nitride and aluminum nitride for improved thermal conductivity. Polimery 62(7/8):560–566

    CAS  Google Scholar 

  30. Kumar P, Yu S, Shahzad F, Hong SM, Kim Y-H, Koo CM (2016) Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101:120–128

    CAS  Google Scholar 

  31. Borjas-Ramos JJ, Ramos-de-Valle LF, Neira-Velázquez MG, Hernández-Hernández E, Saucedo-Salazar EM, Soria-Argüello G (2017) Thermal conductivity of Nanocomposites based in high density polyethylene and surface modified hexagonal boron nitride via cold ethylene plasma. Plasma Chem Plasma Process 38(2):429–441

    Google Scholar 

  32. Zhang C-L, He Y, Zhan Y-Q, Zhang L, Shi H, Xu Z-H (2017) Poly(dopamine) assisted epoxy functionalization of hexagonal boron nitride for enhancement of epoxy resin anticorrosion performance. Polym Adv Technol 28(2):214–221

    CAS  Google Scholar 

  33. Guo Y-Q, Xu G-J, Yang X-T, Ruan K-P, Ma T-B, Zhang Q-Y, Gu J-W, Wu Y-L, Hu L, Guo Z-H (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 12(6):3004–3015

    Google Scholar 

  34. Huang X, Iizuka T, Jiang P, Ohki Y, Tanaka T (2012) Role of Interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Physical Chemistry C 116(25):13629–13639

    CAS  Google Scholar 

  35. Zheng S, Hua W, Ye X-Z, Tian K-H, Huang W-Q, Jing H, Guo Y-L, Tian X-Y (2018) Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH 2 ): effects of the filler distribution and orientation. Compos A: Appl Sci Manuf 109:402–412

    Google Scholar 

  36. Im H, Kim J (2011) The effect of AlO doped multi-walled carbon nanotubes on the thermal conductivity of AlO/epoxy terminated poly(dimethylsiloxane) composites. Carbon 49(11):3503–3511

    CAS  Google Scholar 

  37. Zhou T-L, Xin W, Liu X-H, Xiong D-S (2010) Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon 48(4):1171–1176

    CAS  Google Scholar 

  38. Shi F, Song Y-Y, Niu J, Xia X-H, Wang Z-Q, Zhang X (2006) Facile method to fabricate a large-scale Superhydrophobic surface by galvanic cell reaction. Chem Mater 18(5)

  39. Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). Journal of Thermophysics & Heat Transfer 18(4):481–485

    CAS  Google Scholar 

  40. Lee S (2011) An experimental apparatus measuring convective heat transfer coefficient from a heated fine wire traversing in nanofluids. Journal of Mechanical Science & Technology 25(1):135–142

    Google Scholar 

  41. Han Y-X, Shi X-T, Yang X-T, Guo Y-Q, Zhang J-L, Kong J, Gu J-W (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944

    CAS  Google Scholar 

  42. Yuan W-H, Xiao Q-Q, Li L, Xu T (2016) Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl Therm Eng 106:1067–1074

    CAS  Google Scholar 

  43. Zhou W-Y, Kou Y-J, Yuan M-X, Li B, Cai H-W, Li Z, Chen F-X, Liu X-R, Wang G-H, Chen Q-G, Dang Z-M (2019) Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos Sci Technol 181:10

    Google Scholar 

  44. Guo Y-Q, Xu G-J, Yang X-T, Ruan K-P, Ma T-B, Zhang Q-Y, Gu J-W, Wu Y-L, Liu H, Guo Z-H (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6(12):3004–3015

    CAS  Google Scholar 

  45. Gu J-W, Bai T, Dang J, Feng J-J, Zhang Q-Y (2014) Surface functionalization of HMPBO fibers with MSA/KH550/GlycidylEthyl POSS and improved interfacial adhesion. Polym Compos 35(3):611–616

    CAS  Google Scholar 

  46. Kim K, Ju H, Kim J (2016) Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material. Polymer 91:74–80

    CAS  Google Scholar 

  47. Cumberland DJ, Crawford RJ, Sprevak D (1989) A statistical model for the random packing of real powder particles. 25 (11):1173-1182

  48. Liu M-K, Du Y-F, Miao Y-E, Ding Q-W, He S-X, Tjiu WW, Pan J-S, Liu T-X (2015) Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale 7(3):1037–1046

    CAS  PubMed  Google Scholar 

  49. Ren F, Song D-P, Li Z, Jia L-C, Zhao Y-C, Yan D-X, Ren P-G (2018) Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J Mater Chem C 6(6):1476–1486

    CAS  Google Scholar 

  50. Huang X, Lizuka T, Jiang P, Ohki Y, Tanak T (2012) Role of Interface on the thermal conductivity of highly filled dielectric epoxy/AIN composites. J Physical Chemistry C 116(25):13629–13639

    CAS  Google Scholar 

  51. Zhou W-Y (2011) Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. Thermochim Acta 512(1):183–188

    CAS  Google Scholar 

  52. Lei Y-X, Han Z-M, Ren D-X, Pan H, Xu M-Z, Liu X-B (2018) Design of h-BN-filled Cyanate/epoxy thermal conductive composite with stable dielectric properties. Macromol Res 26(7):602–608

    CAS  Google Scholar 

  53. Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. 49 (9):1625-1634

  54. Ren P-G, Yan D-X, Tao C, Zeng B-Q, Li Z-M (2011) Improved properties of highly oriented Graphene/polymer Nanocomposites. J Appl Polym Sci 121(6):3167–3174

    CAS  Google Scholar 

  55. Rybak A, Gaska K (2015) Functional composites with core–shell fillers: I. particle synthesis and thermal conductivity measurements. J Mater Sci 50(23):7779–7789

    CAS  Google Scholar 

  56. Lin Z, Liu Y, Raghavan S, KS M, SK S, CP W (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5 (15):7633–7640

  57. Xie S-H, Zhu B-K, J-B LI, Wei X-Z, Xu Z-K (2004) Preparation and properties of polyimide/aluminum nitride composites. Polym Test 23(7):797–801

    CAS  Google Scholar 

  58. Kou Y-J, Zhou W-Y, Li B, Dong L-N, Duan Y-E, Hou Q-W, Liu X-R, Cai H-W, Chen Q-G, Dang Z-M (2018) Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene. Composites Part A-Applied Science and Manufacturing 114:97–106

    CAS  Google Scholar 

  59. Zhou T, Zha J-W, Cui R-Y, Fan B-H, Dang Z-M (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces 3(7):2184–2188

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51773167, 21706208).

Code availability

Not applicable.

Funding

The National Natural Science Foundation of China (Grant No. 51773167, 21,706,208).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Di Liang, Penggang Ren, Fang Ren and Jin Wang. Writing - review and editing were performed by Yanling Jin, Chuting Feng, Qian Duan. The first draft of the manuscript was written by Di Liang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Penggang Ren.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Ren, P., Ren, F. et al. Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix. J Polym Res 27, 212 (2020). https://doi.org/10.1007/s10965-020-02193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02193-3

Keywords

Navigation