Skip to main content
Log in

Mussel inspired interfacial modification of boron nitride/carbon nanotubes hybrid fillers for epoxy composites with improved thermal conductivity and electrical insulation properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Epoxy resin is widely used in various industrial fields due to its good adhesion, corrosion resistance and the like, but its thermal conductivity is low and it is difficult to meet the heat dissipation requirements. In order to obtain epoxy composites with high thermal conductivity and excellent electrical insulation, an effective method for functionalizing boron nitride (BN) and multi-walled carbon nanotubes (CNTs) is proposed. The BN and CNTs were first ultrasonically mixed, and then functionalized by a simple dip coating procedure with polydopamine (PDA) coating (named as m(BN/CNT)). Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy analysis demonstrated the successful functionalization of PDA on BN and CNTs surfaces. Adding 20 vol% m(BN10/CNT1) increased the thermal conductivity of the epoxy composite by 231% compared to pure epoxy matrix, while still maintained a volume resistivity above 1014 Ω·cm. Dynamic mechanical analysis and scanning electron microscopy showed that PDA functionalization improved the interfacial interaction between BN, CNTs and the matrix, thus ensuring the improved thermal and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Waldrop MM (2016) The chips are down for Moore’s law. Nature 530((7589)):144–147. https://doi.org/10.1038/530144a

    Article  CAS  PubMed  Google Scholar 

  2. Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17(4):163–174. https://doi.org/10.1016/j.mattod.2014.04.003

    Article  CAS  Google Scholar 

  3. Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T (2013) Polyhedral Oligosilsesquioxane-modified boron nitride nanotube based epoxy Nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23(14):1824–1831. https://doi.org/10.1002/adfm.201201824

    Article  CAS  Google Scholar 

  4. Hu J, Huang Y, Yao Y, Pan G, Sun J, Zeng X, Sun R, Xu JB, Song B, Wong CP (2017) Polymer Composite with Improved Thermal Conductivity by Constructing Hierarchically oriented Three-Dimensional Interconnected Network of BN. ACS Appl Mater Interfaces:13544–13553. https://doi.org/10.1021/acsami.7b02410

  5. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  6. Vadivelu MA, Kumar CR, Joshi GM (2016) Polymer composites for thermal management: a review. Composite Interfaces 23(9):847–872. https://doi.org/10.1080/09276440.2016.1176853

    Article  CAS  Google Scholar 

  7. Shen J, Zhang P, Song L, Li J, Ji B, Li J, Chen L (2019) Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Compos Part B 179:107545–107554. https://doi.org/10.1016/j.compositesb.2019.107545

    Article  CAS  Google Scholar 

  8. Zhang L, Zhang P, Wang F, Kang M, Li R, Mou Y, Huang Y (2016) Phase change materials based on polyethylene glycol supported by graphene-based mesoporous silica sheets. Appl Therm Eng 101:217–223. https://doi.org/10.1016/j.applthermaleng.2016.02.120

    Article  CAS  Google Scholar 

  9. Kumanek B, Janas D (2019) Thermal conductivity of carbon nanotube networks: a review. J Mater Sci 54(10):7397–7427. https://doi.org/10.1007/s10853-019-03368-0

    Article  CAS  Google Scholar 

  10. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10(8):3209–3215. https://doi.org/10.1021/nl1022139

    Article  CAS  PubMed  Google Scholar 

  11. Sun D, Yin J, Liu Y, Liu X (2016) The electrical and thermal properties of polyimide/boron nitride nanocomposite films. J Polym Res 23(12):254–261. https://doi.org/10.1007/s10965-016-1151-x

    Article  CAS  Google Scholar 

  12. Gao C, Lu H, Ni H, Chen J (2017) Structure, thermal conductive, dielectric and electrical insulating properties of UHMWPE/BN composites with a segregated structure. J Polym Res 25(1):6–14. https://doi.org/10.1007/s10965-017-1414-1

    Article  CAS  Google Scholar 

  13. Yang N, Xu C, Hou J, Yao Y, Zhang Q, Grami ME, He L, Wang N, Qu X (2016) Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv 6(22):18279–18287. https://doi.org/10.1039/c6ra01084a

    Article  CAS  Google Scholar 

  14. Gu J, Zhang Q, Dang J, Xie C (2012) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 23(6):1025–1028. https://doi.org/10.1002/pat.2063

    Article  CAS  Google Scholar 

  15. Fu Y-X, He Z-X, Mo D-C, Lu S-S (2014) Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl Therm Eng 66(1–2):493–498. https://doi.org/10.1016/j.applthermaleng.2014.02.044

    Article  CAS  Google Scholar 

  16. Guo H, Wang Q, Liu J, Du C, Li B (2019) Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes. Appl Surf Sci 487:379–388. https://doi.org/10.1016/j.apsusc.2019.05.070

    Article  CAS  Google Scholar 

  17. Tutgun MS, Sinirlioglu D, Celik SU, Bozkurt A (2015) Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J Polym Res 22(4):47–57. https://doi.org/10.1007/s10965-015-0678-6

    Article  CAS  Google Scholar 

  18. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SKK, Polu AR, AlMaadeed MA-A, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24(2):27–40. https://doi.org/10.1007/s10965-017-1189-4

    Article  CAS  Google Scholar 

  19. Hou J, Li G, Yang N, Qin L, Grami ME, Zhang Q, Wang N, Qu X (2014) Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv 4(83):44282–44290. https://doi.org/10.1039/c4ra07394k

    Article  CAS  Google Scholar 

  20. Lee D, Song SH, Hwang J, Jin SH, Park KH, Kim BH, Hong SH, Jeon S (2013) Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 9(15):2602–2610. https://doi.org/10.1002/smll.201203214

    Article  CAS  PubMed  Google Scholar 

  21. Shen H, Guo J, Wang H, Zhao N, Xu J (2015) Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl Mater Interfaces 7(10):5701–5708. https://doi.org/10.1021/am507416y

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Jung H, Yu S, Man Cho S, Tiwari VK, Babu Velusamy D, Park C (2016) Boron nitride Nanosheets (BNNSs) chemically modified by "grafting-from" polymerization of poly(caprolactone) for thermally conductive polymer composites. Chem Asian J 11(13):1921–1928. https://doi.org/10.1002/asia.201600470

    Article  CAS  PubMed  Google Scholar 

  23. Wu X, Yang Z, Kuang W, Tang Z, Guo B (2017) Coating polyrhodanine onto boron nitride nanosheets for thermally conductive elastomer composites. Compos A: Appl Sci Manuf 94:77–85. https://doi.org/10.1016/j.compositesa.2016.12.015

    Article  CAS  Google Scholar 

  24. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53(2):471–480. https://doi.org/10.1016/j.polymer.2011.12.040

    Article  CAS  Google Scholar 

  25. Zheng Z, Cox M, Li B (2017) Surface modification of hexagonal boron nitride nanomaterials: a review. J Mater Sci 53(1):66–99. https://doi.org/10.1007/s10853-017-1472-0

    Article  CAS  Google Scholar 

  26. Kumari S, Sharma OP, Gusain R, Mungse HP, Kukrety A, Kumar N, Sugimura H, Khatri OP (2015) Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction. ACS Appl Mater Interfaces 7(6):3708–3716. https://doi.org/10.1021/am5083232

    Article  CAS  PubMed  Google Scholar 

  27. Kim K, Kim J (2014) Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceram Int 40(4):5181–5189. https://doi.org/10.1016/j.ceramint.2013.10.076

    Article  CAS  Google Scholar 

  28. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430. https://doi.org/10.1126/science.1147241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40(7):4244–4258. https://doi.org/10.1039/c1cs15026j

    Article  CAS  PubMed  Google Scholar 

  30. Li G, Xing R, Geng P, Liu Z, He L, Wang N, Zhang Q, Qu X (2018) Surface modification of boron nitride via poly (dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity. Polym Adv Technol 29(1):337–346. https://doi.org/10.1002/pat.4119

    Article  CAS  Google Scholar 

  31. Ling Y, Li W, Wang B, Gan W, Zhu C, Brady MA, Wang C (2016) Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness. RSC Adv 6(37):31037–31045. https://doi.org/10.1039/c5ra26539h

    Article  CAS  Google Scholar 

  32. Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong CP (2016) Silver nanoparticle-deposited boron nitride Nanosheets as fillers for polymeric composites with high thermal conductivity. Sci Rep 6:19394–19402. https://doi.org/10.1038/srep19394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao Y, Zeng X, Sun R, Xu JB, Wong CP (2016) Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering. ACS Appl Mater Interfaces 8(24):15645–15653. https://doi.org/10.1021/acsami.6b04636

    Article  CAS  PubMed  Google Scholar 

  34. Li P, Shen H, Qian Z, Yang X, Zhao N, Zhu C, Xu J (2017) Facile fabrication of flexible layered GO/BNNS composite films with high thermal conductivity. J Mater Sci 53(6):4189–4198. https://doi.org/10.1007/s10853-017-1867-y

    Article  CAS  Google Scholar 

  35. Hong J-P, Yoon S-W, Hwang T, Oh J-S, Hong S-C, Lee Y, Nam J-D (2012) High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim Acta 537:70–75. https://doi.org/10.1016/j.tca.2012.03.002

    Article  CAS  Google Scholar 

  36. Lee D, Lee B, Park KH, Ryu HJ, Jeon S, Hong SH (2015) Scalable exfoliation process for highly soluble boron nitride Nanoplatelets by hydroxide-assisted ball milling. Nano Lett 15(2):1238–1244. https://doi.org/10.1021/nl504397h

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Yang Y, Jiang G, Yuan Z, Yuan S (2018) A facile synthesis of boron nitride nanosheets and their potential application in dye adsorption. Diam Relat Mater 81:89–95. https://doi.org/10.1016/j.diamond.2017.11.012

    Article  CAS  Google Scholar 

  38. Wang Y, Shi Z, Yin J (2011) Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem 21(30):11371–11377. https://doi.org/10.1039/c1jm10342c

    Article  CAS  Google Scholar 

  39. Xiao Q, Zhan C, You Y, Tong L, Wei R, Liu X (2018) Preparation and thermal conductivity of copper phthalocyanine grafted boron nitride nanosheets. Mater Lett 227:33–36. https://doi.org/10.1016/j.matlet.2018.05.035

    Article  CAS  Google Scholar 

  40. Lee W, Lee JU, Byun J-H (2015) Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites. Compos Sci Technol 110:53–61. https://doi.org/10.1016/j.compscitech.2015.01.021

    Article  CAS  Google Scholar 

  41. Wang Y, Kai Y, Tong L, You Y, Huang Y, Liu X (2019) The frequency independent functionalized MoS2 nanosheet/poly(arylene ether nitrile) composites with improved dielectric and thermal properties via mussel inspired surface chemistry. Appl Surf Sci 481:1239–1248. https://doi.org/10.1016/j.apsusc.2019.03.235

    Article  CAS  Google Scholar 

  42. Ren P-G, Si X-H, Sun Z-F, Ren F, Pei L, Hou S-Y (2016) Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure. J Polym Res 23(2):21–31. https://doi.org/10.1007/s10965-015-0908-y

    Article  CAS  Google Scholar 

  43. Brocks T, Cioffi MOH, Voorwald HJC (2013) Effect of fiber surface on flexural strength in carbon fabric reinforced epoxy composites. Appl Surf Sci 274:210–216. https://doi.org/10.1016/j.apsusc.2013.03.018

    Article  CAS  Google Scholar 

  44. Hu X, Qi R, Zhu J, Lu J, Luo Y, Jin J, Jiang P (2014) Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy. J Appl Polym Sci 131(2):1–9. https://doi.org/10.1002/app.39754

    Article  CAS  Google Scholar 

  45. Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV (2004) Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater 14(7):643–648. https://doi.org/10.1002/adfm.200305162

    Article  CAS  Google Scholar 

  46. Li W, Shang T, Yang W, Yang H, Lin S, Jia X, Cai Q, Yang X (2016) Effectively exerting the reinforcement of dopamine reduced Graphene oxide on epoxy-based composites via strengthened interfacial bonding. ACS Appl Mater Interfaces 8(20):13037–13050. https://doi.org/10.1021/acsami.6b02496

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Zhao D, Zou X, Mao L, Shi L (2017) The exfoliation and functionalization of boron nitride nanosheets and their utilization in silicone composites with improved thermal conductivity. J Mater Sci Mater Electron 28(17):12984–12994. https://doi.org/10.1007/s10854-017-7130-0

    Article  CAS  Google Scholar 

  48. Chen Pan KK, Jia Q, Yu Z, Wu G, Ji T (2016) Improved thermal conductivity and dielectric properties of hBNPTFE composites via surface treatment by silane coupling agent. Compos Part B 111:83–90. https://doi.org/10.1016/j.compositesb.2016.11.050

    Article  CAS  Google Scholar 

  49. Huang T, Zeng X, Yao Y, Sun R, Meng F, Xu J, Wong C (2016) Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity. RSC Adv 6(42):35847–35854. https://doi.org/10.1039/c5ra27315c

    Article  CAS  Google Scholar 

  50. Duan G, Wang Y, Yu J, Zhu J, Hu Z (2019) Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride. Front Mater Sci 13(1):64–76. https://doi.org/10.1007/s11706-019-0446-3

    Article  Google Scholar 

  51. Shao L, Shi L, Li X, Song N, Ding P (2016) Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites. Compos Sci Technol 135:83–91. https://doi.org/10.1016/j.compscitech.2016.09.013

    Article  CAS  Google Scholar 

  52. Guo Y, He J, Wang H, Su Z, Qu Q, Tian R, Tian X, Li X (2019) Boron nitride-graphene sponge as skeleton filled with epoxy resin for enhancing thermal conductivity and electrical insulation. Polym Compos 40(1):E1600–E1611. https://doi.org/10.1002/pc.25095

    Article  CAS  Google Scholar 

  53. Yang G, Wang B, Cheng H, Mao Z, Xu H, Zhong Y, Feng X, Yu J, Sui X (2020) Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity. Int J Biol Macromol 148:627–634. https://doi.org/10.1016/j.ijbiomac.2020.01.173

    Article  CAS  PubMed  Google Scholar 

  54. Isarn I, Bonnaud L, Massagués L, Serra À, Ferrando F (2019) Enhancement of thermal conductivity in epoxy coatings through the combined addition of expanded graphite and boron nitride fillers. Progress in Organic Coatings 133:299–308. https://doi.org/10.1016/j.porgcoat.2019.04.064

    Article  CAS  Google Scholar 

  55. Isarn I, Bonnaud L, Massagués L, Serra À, Ferrando F (2019) Study of the synergistic effect of boron nitride and carbon nanotubes in the improvement of thermal conductivity of epoxy composites. Polym Int 69(3):280–290. https://doi.org/10.1002/pi.5949

    Article  CAS  Google Scholar 

  56. Xue Y, Li X, Wang H, Zhang D, Chen Y (2019) Thermal conductivity improvement in electrically insulating silicone rubber composites by the construction of hybrid three-dimensional filler networks with boron nitride and carbon nanotubes. J Appl Polym Sci 136(2):46929–46935. https://doi.org/10.1002/app.46929

    Article  CAS  Google Scholar 

  57. Li Z, Wang D, Zhang M, Zhao L (2014) Enhancement of the thermal conductivity of polymer composites with Ag-graphene hybrids as fillers. Phys Status Solidi A 211(9):2142–2149. https://doi.org/10.1002/pssa.201431054

    Article  CAS  Google Scholar 

  58. Chu K, W-s L, C-c J, F-l T (2012) Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Appl Phys Lett 101(21):211903–211906. https://doi.org/10.1063/1.4767899

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21404094), Graphene Engineering Technology Research Center of Sichuan (2018SCGCZX05) and the Longshan academic talent research supporting program of SWUST (17LZX636, 18LZX629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeping Wu or Ping Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, B., Wu, Y., Zhang, P. et al. Mussel inspired interfacial modification of boron nitride/carbon nanotubes hybrid fillers for epoxy composites with improved thermal conductivity and electrical insulation properties. J Polym Res 27, 239 (2020). https://doi.org/10.1007/s10965-020-02189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02189-z

Keywords

Navigation