Skip to main content
Log in

Preparation and controlled properties of temperature/photo dual sensitive polymers by facile Ugi reaction

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this investigation, we described a facile preparation of temperature/photo dual sensitive polymers (PGABs) by Ugi four-component polymerization (Ugi-4CP) at room temperature in “one-pot” method using glutaraldehyde, 4-amido-azobenzene, t-butyl isocyanide and carboxyl-end-capped polyethylene glycols (S-PEG) as monomers. PGABs were found to be reversibly sensitive to the temperature in salt solution, and their lower critical solution temperatures (LCST) can be tuned to the range of 17.2–68.4 °C by changing the structure of PGABs, sort and concentration of salt. The configuration transition of PGABs between cis-form and trans-form was reversibly induced by the alternating radiation at 365 and 254 nm. The rate and conversion of isomerization showed a remarkable dependence on the chemical structure of PGAB. By the photosensitivity, the LCST of PGAB-800 is further regulated in 1.0 °C change because of the hydrophilicity difference of cis-trans-azobenzene moiety. Through the combination of the thermosensitivity and photosensitivity, the particles of PGABs with nano/μm dimension were successfully controlled by the light radiation and temperature change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canale Salazar I, Lizardi Mendoza J, Lopez Franco Y, Peniche CC, Hernandez J, Goycoolea FM, Arguelles Monal W (2020) Synthesis of regioselective chitosan copolymers with beta-cyclodextrin and poly(N-isopropyl acrylamide). J Polym Res 27(5):112

    CAS  Google Scholar 

  2. Roth PJ, Jochum FD, Theato P (2011) UCST-type behavior of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) in aliphatic alcohols: solvent, co-solvent, molecular weight, and end group dependences. Soft Matter 7(6):2484–2492

    CAS  Google Scholar 

  3. Roth PJ, Davis TP, Lowe AB (2012) Comparison between the LCST and UCST transitions of double thermoresponsive diblock copolymers: insights into the behavior of POEGMA in alcohols. Macromolecules 45(7):3221–3230

    CAS  Google Scholar 

  4. Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34(9):893–910

    CAS  Google Scholar 

  5. Patel P, Mandal A, Gote V, Pal D, Mitra AK (2019) Thermosensitive hydrogel-based drug delivery system for sustained drug release. J Polym Res 26(6):131

    Google Scholar 

  6. Hamerska-Dudra A, Bryjak J, Trochimczuk AW (2006) Novel method of enzymes stabilization on crosslinked thermosensitive carriers. Enzym Microb Technol 38(7):921–925

    CAS  Google Scholar 

  7. Kim MS, Park SJ, Chun HJ, Kim CH (2011) Thermosensitive hydrogels for tissue engineering. Tissue Eng Regen Med 8(2):117–123

    Google Scholar 

  8. Zhao P, Chen C, Ni M, Peng L, Li C, Xie Y, Fei J (2019) Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide. Microchim Acta 186(3):134

    Google Scholar 

  9. Oroojalian F, Jahanafrooz Z, Chogan F, Rezayan AH, Malekzade E, Rezaei SJT, Nabid MR, Sahebkar A (2019) Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications. J Cell Biochem 120(10):17194–17207

    CAS  PubMed  Google Scholar 

  10. Wang P, Chu W, Zhuo X, Zhang Y, Gou J, Ren T, He H, Yin T, Tang X (2017) Modified PLGA-PEG-PLGA thermosensitive hydrogels with suitable thermosensitivity and properties for use in a drug delivery system. J Mat Chem B 5(8):1551–1565

    CAS  Google Scholar 

  11. Lv F, Mao L, Liu T (2014) Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG–PCL copolymer: preparation, characterization and fluorescence imaging in vivo. Mater Sci Eng C Mater Biol Appl 43:221–230

    CAS  PubMed  Google Scholar 

  12. Rijcken CJF, Veldhuis TFJ, Ramzi A, Meeldijk JD, Van Nostrum CF, Hennink WE (2005) Novel fast degradable thermosensitive polymeric micelles based on PEG-block-poly(N-(2-hydroxyethyl)methacrylamide-oligolactates). Biomacromolecules 6(4):2343–2351

    CAS  PubMed  Google Scholar 

  13. Aisida SO, Ugwoke E, Uwais A, Iroegbu C, Botha S, Ahmad I, Maaza M, Ezema FI (2019) Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. J Polym Res 26(9):225

    CAS  Google Scholar 

  14. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103(16):6315–6320

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu H, Jia Y, Chen G, Zhang Y (2016) Fabrication of core/sheath PCL/PEG–PNIPAAm fibers as thermosensitive release carriers by a new technique combining blend electrospinning and ultraviolet-induced graft polymerization. Mate Lett 164:505–508

    CAS  Google Scholar 

  16. Yoshida T, Kanaoka S, Aoshima S (2005) Photosensitive copolymers with various types of azobenzene side groups synthesized by living cationic polymerization. J Polym Sci Pol Chem 43(18):4292–4297

    CAS  Google Scholar 

  17. Ling J, Rong MZ, Zhang MQ (2011) Coumarin imparts repeated photochemical remendability to polyurethane. J Mater Chem 21(45):18373–18380

    CAS  Google Scholar 

  18. Canadell J, Hunt BJ, Cook AG, Mantecón A, Cádiz V (2006) Phosphorylated copolymers containing pendant, crosslinkable spiro orthoester moieties. J Polym Sci Pol Chem 44(23):6728–6737

    CAS  Google Scholar 

  19. Dias AR, Da Piedade MM, Simoes JM, Simoni JA, Teixeira C, Diogo HP, Pilcher G (1992) Enthalpies of formation of cis-azobenzene and trans-azobenzene. J Chem Thermodyn 24(4):439–447

    CAS  Google Scholar 

  20. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437

    CAS  PubMed  Google Scholar 

  21. Barrett CJ, Mamiya JI, Yager KG, Ikeda T (2007) Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3(10):1249–1261

    CAS  Google Scholar 

  22. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42(17):7468–7483

    CAS  PubMed  Google Scholar 

  23. Kim JH, Koo E, Ju SY, Jang WD (2015) Multimodal stimuli-responsive poly(2-isopropyl-2-oxazoline) with dual molecular logic gate operations. Macromolecules 48(14):4951–4956

    CAS  Google Scholar 

  24. Ding L, Zhang P, Fu C, Yin J, Mao Y, Liu N, Li S, Yang C, Zhao R, Deng K (2019) Synthesis of temperature and light sensitive copolymers with controlled aggregation during phase transitions. Macromol Chem Phys 220(22):1900349

    CAS  Google Scholar 

  25. Abdallah AEM, Mohareb RM, Ahmed EA (2019) Novel pyrano[2,3-d]thiazole and thiazolo[4,5-b]pyridine derivatives: one-pot three-component synthesis and biological evaluation as anticancer agents, c-met, and Pim-1 kinase inhibitors. J Heterocycl Chem 56(11):3017–3029

    CAS  Google Scholar 

  26. Weber L (2002) Multi-component reactions and evolutionary chemistry. Drug Discov Today 7(2):143–147

    CAS  PubMed  Google Scholar 

  27. Sehlinger A, Dannecker PK, Kreye O, Meier MAR (2014) Diversely substituted polyamides: macromolecular design using the Ugi four-component reaction. Macromolecules 47(9):2774–2783

    CAS  Google Scholar 

  28. Al Samad A, De Winter J, Gerbaux P, Jérôme C, Debuigne A (2017) Unique alternating peptide-peptoid copolymers from dipeptides via Ugi reaction in water. Chem Commun 53(90):12240–12243

    Google Scholar 

  29. Koyama Y, Gudeangadi PG (2017) One-pot synthesis of alternating peptides exploiting a new polymerization technique based on Ugi’s 4CC reaction. Chem Commun 53(27):3846–3849

    CAS  Google Scholar 

  30. Deng H, Fan X, Wang M, Jiang T, Liu H, Wang S, Yin Z, Ma X, Di Y, Deng K (2014) Molecular design and preparation of a thermosensitive poly(lysine ester-diacetoxy tartaric acid) with good biocompatibility. Macromol Chem Phys 15(19):1870–1878

    Google Scholar 

  31. Deng H, Yin Z, Jiang T, Liu H, Fan X, Wang M, Ma X, Fan Z, Zheng C, Deng K (2015) Fabrication of a thermo-sensitive poly(N-acetyl-L-glutamic acid-co-lysine ester) with excellent biocompatibility. Colloid Polym Sci 293(8):2341–2348

    CAS  Google Scholar 

  32. Zhao M, Fan Z, Yang Z, Xu J, Zheng C, Yue Y, Liu H, Deng K (2017) Non-cytotoxic poly(amino acid) with excellent thermo-sensitivity from L-lysine and L-aspartic acid as a hydrophobic drug carrier. J Polym Res 24(10):174

    Google Scholar 

  33. Zhao M, Liu N, Zhao R, Zhang P, Li S, Yue Y, Deng K (2019) Facile synthesis and properties of multifunctionalized polyesters by passerini reaction as thermosensitive, biocompatible, and triggerable drug release carriers. ACS Appl Bio Mater 2(4):1714–1723

    CAS  Google Scholar 

  34. Zhang X, Wang S, Liu J, Xie Z, Luan S, Xiao C, Tao Y, Wang X (2016) Ugi reaction of natural amino acids: a general route toward facile synthesis of polypeptoids for bioapplications. ACS Macro Lett 5(9):1049–1054

    CAS  Google Scholar 

  35. Temel O, Melahat G, Baki H (2010) One-Step Synthesis of Triarm Block Copolymers via Simultaneous Reversible-Addition Fragmentation Chain Transfer and Ring-Opening Polymerization. J Appl Polym Sci 117(3):1638–1645

    Google Scholar 

  36. Temel O, Mahmut Y, Melahat G (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bul 73(6):1497–1513

    Google Scholar 

  37. Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162

    Google Scholar 

  38. Kim MH, Park H, Park WH (2018) Effect of pH and precursor salts on in situ formation of calcium phosphate nanoparticles in methylcellulose hydrogel. Carbohydr Polym 191:176–182

    CAS  PubMed  Google Scholar 

  39. Wang H, Sun S, Wu P (2011) Thermodynamics of hyperbranched poly(ethylenimine) with isobutyramide residues during phase transition: an insight into the molecular mechanism. J Phys Chem B 115(28):8832–8844

    CAS  PubMed  Google Scholar 

  40. Lu L, Wang Z, Cao Y (2012) Salt effect on the phase transition behavior of thermo-sensitive polyamide. J Wuhan Univ Technol-Mat Sci Edit 27(2):285–289

    CAS  Google Scholar 

  41. Zhang Y, Wu W, Shen G, Zhang Q, Gao J (2014) Temperature dependence of localised surface plasmon resonance effect on photoisomerisation of azobenzene units in Ag/poly(N-isopropylacrylamide)-blockpoly{6-[4-(4-methylphenyl-azo)phenoxy] hexylacrylate} composite particles. Micro Nano Lett 9(6):390–394

    CAS  Google Scholar 

  42. Ak M, Yildiz HB, Toppare L (2014) Enzyme immobilization in a photosensitive conducting polymer bearing azobenzene in the main chain. Polym Bull 71(7):1827–1841

    CAS  Google Scholar 

  43. Guo JW, Li ZY, Huang BR, Lu CH, Chen JK (2018) Antigen detection with thermosensitive hydrophilicity of poly(N-isopropylacrylamide)-grafted poly(vinyl chloride) fibrous mats. J Mat Chem B 6(21):3486–3496

    CAS  Google Scholar 

  44. Fliegl H, Köhn A, Hättig C, Ahlrichs R (2003) Ab initio calculation of the vibrational and electronic spectra of trans- and cis-azobenzene. J Am Chem Soc 125(32):9821–9827

    CAS  PubMed  Google Scholar 

  45. Ray SS, Deb CK, Chang HM, Chen SS, Ganesapillai M (2019) Crosslinked PVDF-HFP-based hydrophobic membranes incorporated with CNF for enhanced stability and permeability in membrane distillation. J Appl Polym Sci 136(40):48021

    Google Scholar 

  46. Villa M, Bergamini G, Ceroni P, Baroncini M (2019) Photocontrolled self-assembly of azobenzene nanocontainers in water: light-triggered uptake and release of lipophilic molecules. Chem Commun 55(79):11860–11863

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Cao or Kuilin Deng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.38 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Ding, L., Yin, J. et al. Preparation and controlled properties of temperature/photo dual sensitive polymers by facile Ugi reaction. J Polym Res 27, 216 (2020). https://doi.org/10.1007/s10965-020-02167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02167-5

Keywords

Navigation