Skip to main content

Advertisement

Log in

Competing hydrogen bonding produces mesoporous/macroporous carbons templated by a high-molecular-weight poly(caprolactone–b–ethylene oxide–b–caprolactone) triblock copolymer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study we developed a simple strategy to synthesize macro- and mesoporous carbons by using a high-molecular-weight triblock copolymer, PCL440-b-PEO454-b-PCL440 (CEC), as a single template, itself prepared through simple ring-opening polymerization from a commercial homopolymer (HO-PEO454-OH) as the bifunctional macroinitiator and a resol-type phenolic resin as the carbon source. We employed differential scanning calorimetry, Fourier transform infrared (FTIR) spectroscopy, and small-angle X-ray scattering to investigate the thermal behavior, hydrogen bonding, and self-assembled nanostructures of the phenolic/CEC blends. We obtained macro- and mesoporous carbons possessing cylinder or spherical micelle structures with large pores (> 50 nm) and high surface areas (>400 m2 g−1), the result of most of the phenolic OH units preferring to interact (based on FTIR spectral analyses) with the PEO segment rather than the PCL segment. These macro/mesoporous carbons displayed reasonable CO2 uptake and energy storage behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    CAS  PubMed  Google Scholar 

  2. AFM EL-M, Young C, Kim J, You J, Yamauchi Y, Kuo SW (2019) Hollow Microspherical and Microtubular [3+3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Appl Mater Interfaces 11:9343–9354

    Google Scholar 

  3. Wang C, Wang TM, Wang QH (2019) Ultralow-dielectric, nanoporous poly(methyl silsesquioxanes) films templated by a self-assembled block copolymer upon solvent annealing. J Polym Res 26:5

    Google Scholar 

  4. Wang ZB, Qiang HW, Zhang CL, Zhu ZH, Chen M, Chen CN, Zhang DW (2018) Facile fabrication of hollow polyaniline spheres and its application in supercapacitor. J Polym Res 25:129

    Google Scholar 

  5. El-Mahdy AFM, Mohamed MG, Mansoure TH, Yu HH, Chen T, Kuo SW (2019) Ultrastable tetraphenyl-p-phenylenediamine-based covalent organic frameworks as platforms for high-performance electrochemical supercapacitors. Chem Commun 55:14890–14893

    CAS  Google Scholar 

  6. Wu YC, Lu YS, Bastakoti BP, Li Y, Pramanik M, Hossain MS, Yanmaz E, Kuo SW (2016) Mesoporous TiO2 Thin Film Formed From a Bioinspired Supramolecular Assembly. ChemistrySelect 1:4295–4299

    CAS  Google Scholar 

  7. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66:1739–1758

    CAS  Google Scholar 

  8. Langley PJ, Hulliger J (1999) Nanoporous and mesoporous organic structures: new openings for materials research. Chem Soc Rev 28:279–291

    CAS  Google Scholar 

  9. Dawson R, Cooper I, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37:530–563

    CAS  Google Scholar 

  10. Muylaert I, Verberckmoes A, Decker JD, Voort PVD (2012) Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials. Adv Colloid Interf Sci 175:39–51

    CAS  Google Scholar 

  11. Dobrosielska K, Wakao S, Takano A, Matsushita Y (2008) Nanophase-separated structures of AB block copolymer/C homopolymer blends with complementary hydrogen-bonding interactions. Macromolecules 41:7695–7698

    CAS  Google Scholar 

  12. Lee HF, Kuo SW, Huang CF, Lu JS, Chan SC, Wang CF, Chang FC (2006) Hydrogen-bonding interactions mediate the phase behavior of an AB/C block copolymer/homopolymer blend comprising poly (methyl methacrylate-b-vinylpyrrolidone) and poly (vinylphenol). Macromolecules 39:5458–5465

    CAS  Google Scholar 

  13. Kwak J, Han SH, Moon HC, Kim JK, Koo J, Lee JS, Pryamitsyn V, Ganesan V (2015) Phase behavior of binary blend consisting of asymmetric polystyrene-block-poly(2-vinylpyridine) copolymer and asymmetric deuterated polystyrene-block-poly(4-hydroxystyrene) copolymer. Macromolecules 48:1262–1266

    CAS  Google Scholar 

  14. Miyase H, Asai Y, Takano A, Matsushita Y (2017) Kaleidoscopic tiling patterns with large unit cells from ABC star-shaped Terpolymer/Diblock copolymer blends with hydrogen bonding interaction. Macromolecules 50:979–986

    CAS  Google Scholar 

  15. Tsou CT, Kuo SW (2019) Competing Hydrogen Bonding Interaction Creates Hierarchically Ordered Self-Assembled Structures of PMMA-b-P4VP/PVPh-b-PS Mixtures. Macromolecules 52:8374–8383

    CAS  Google Scholar 

  16. Mao BH, AFM EL-M, Kuo SW (2019) Bio-inspired multiple complementary hydrogen bonds enhance the miscibility of conjugated polymers blended with polystyrene derivatives. J Polym Res 26:208

    CAS  Google Scholar 

  17. Kwak J, Han SH, Moon HC, Kim JK (2015) Effect of the degree of hydrogen bonding on asymmetric lamellar microdomains in binary block copolymer blends. Macromolecules 48:6347–6352

    CAS  Google Scholar 

  18. Tseng TC, Kuo SW (2019) Hydrogen bonding induces unusual self-assembled structures from mixtures of two miscible disordered diblock copolymers. Eur Polym J 116:361–369

    CAS  Google Scholar 

  19. Tseng TC, Kuo SW (2018) Hierarchical self-assembled structures from Diblock copolymer mixtures by competitive hydrogen bonding strength. Molecules 23:2242

    PubMed Central  Google Scholar 

  20. Tseng TC, Kuo SW (2018) Hydrogen-bonding strength influences hierarchical self-assembled structures in unusual miscible/immiscible Diblock copolymer blends. Macromolecules 51:6451–6459

    CAS  Google Scholar 

  21. Soler-IIIia GJ, Crepaldi EL, Grosso D, Sanchez C (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci 8:109–126

    Google Scholar 

  22. Wei J, Wang H, Deng Y, Sun Z, Shi L, Tu B, Luqman M, Zhao D (2011) Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J Am Chem Soc 133:20369–20377

    CAS  PubMed  Google Scholar 

  23. Li JG, Chen WC, Kuo SW (2012) Phase behavior of mesoporous silicas templated by the amphiphilic diblock copolymer poly (ethylene-b-ethylene oxide). Microporous Mesoporous Mater 163:34–41

    CAS  Google Scholar 

  24. Altukhov O, Kuo SW (2015) Crystallization ability of poly (lactic acid) block segments in templating poly(ethylene oxide-b-lactic acid) diblock copolymers affects the resulting structures of mesoporous silicas. RSC Adv 5:22625–22637

    CAS  Google Scholar 

  25. Liu CC, Chu WC, Li JG, Kuo SW (2014) Mediated competitive hydrogen bonding form mesoporous phenolic resins templated by poly(ethylene oxide-b-ε-caprolactone-b-l-lactide) triblock copolymers. Macromolecules 47:6389–6400

    CAS  Google Scholar 

  26. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    CAS  PubMed  Google Scholar 

  27. Chu WC, Chiang SF, Li JG, Kuo SW (2014) Mesoporous silicas templated by symmetrical multiblock copolymers through evaporation-induced self-assembly. RSC Adv 4:784–793

    CAS  Google Scholar 

  28. Kosonen H, Ruokolainen J, Torkkeli M, Serimaa R, Nyholm P, Ikkala O (2002) Micro- and macrophase separation in phenolic resol resin/PEO-PPO-PEO block copolymer blends: effect of hydrogen-bonded PEO length. Macromol Chem Phys 203:388–392

    CAS  Google Scholar 

  29. Liang C, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128:5316–5317

    CAS  PubMed  Google Scholar 

  30. Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem Mater 18:4447–4464

    CAS  Google Scholar 

  31. Chu WC, Chiang SF, Li JG, Kuo SW (2013) Hydrogen bonding-mediated microphase separation during the formation of mesoporous novolac-type phenolic resin templated by the triblock copolymer, PEO-b-PPO-b-PEO. Materials 6:5077–5093

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng Y, Yu T, Wang Y, Shi Y, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X, Zhao D (2007) Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J Am Chem Soc 29:1690–1697

    Google Scholar 

  33. Bloch E, Llewellyn PL, Phan T, Bertin D, Hornebecq V (2009) On defining a simple empirical relationship to predict the pore size of mesoporous silicas prepared from PEO-b-PS diblock copolymers. Chem Mater 21:48–55

    CAS  Google Scholar 

  34. Hu D, Xu Z, Zeng K, Zheng S (2010) From self-organized Novolac resins to ordered nanoporous carbons. Macromolecules 43:2960–2969

    CAS  Google Scholar 

  35. Deng Y, Liu C, Gu D, Yu T, Tu B, Zhao D (2008) Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer. J Mater Chem 18:91–97

    CAS  Google Scholar 

  36. Li JG, Lin YD, Kuo SW (2011) From ficrophase separation to self-organized mesoporous phenolic resin through competitive hydrogen bonding with double-crystalline diblock copolymers of poly(ethylene oxide-b-ε-caprolactone). Macromolecules 44:9295–9309

    CAS  Google Scholar 

  37. Li JG, Chung CY, Kuo SW (2012) Transformations and enhanced long-range ordering of mesoporous phenolic resin templated by poly (ethylene oxide-b-ε-caprolactone) block copolymers blended with star poly (ethylene oxide)-functionalized silsesquioxane (POSS). J Mater Chem 22:18583–18595

    CAS  Google Scholar 

  38. Chu WC, Bastakoti BP, Kaneti YV, Li JG, Alamri HR, Alothman ZA, Yamauchi Y, Kuo SW (2017) Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from poly(ethylene oxide-b-caprolactone) Diblock copolymers. Chem Eur J 23:13734–13741

    CAS  PubMed  Google Scholar 

  39. Li JG, Ho YF, Ahmed MMM, Liang HC, Kuo SW (2019) Mesoporous carbons Templated by PEO-PCL block copolymers as electrode materials for Supercapacitors. Chem Eur J 25:10456–10463

    CAS  PubMed  Google Scholar 

  40. AFM EL-M, Liu TE, Kuo SW (2020) Direct synthesis of nitrogen-doped Mesoporous carbons from Triazine-functionalized Resol for CO2 uptake and highly efficient removal of dyes. J Hazard Mater 391:122163

    Google Scholar 

  41. Werner JG, Hoheisel TN, Wiesner U (2014) Synthesis and characterization of gyroidal mesoporous carbons and carbon monoliths with tunable ultralarge pore size. ACS Nano 8:731–743

    CAS  PubMed  Google Scholar 

  42. Deng Y, Liu J, Liu C, Gu D, Sun Z, Wei J, Zhang J, Tu B, Zhao D (2008) Ultra-large-pore mesoporous carbons templated from poly(ethylene oxide)-b-polystyrene diblock copolymer by adding polystyrene homopolymer as a pore expander. Chem Mater 20:7281–7286

    CAS  Google Scholar 

  43. Wei J, Deng Y, Zhang J, Sun Z, Tu B, Zhao D (2011) Large-pore ordered mesoporous carbons with tunable structures and pore sizes. Solid State Sci 13:784–792

    CAS  Google Scholar 

  44. Kuo SW, Lin CL, Chang FC (2002) Phase behavior and hydrogen bonding in ternary polymer blends of phenolic resin/poly(ethylene oxide)/poly(ε-caprolactone). Macromolecules 35:278–285

    CAS  Google Scholar 

  45. Kuo SW (2008) Hydrogen-bonding in polymer blends. J Polym Res 15:459–486

    CAS  Google Scholar 

  46. Hsu JY, Hsieh IF, Nandan B, Chiu FC, Chen JH, Jeng US, Chen HL (2007) Crystallization kinetics and crystallization-induced morphological formation in the blends of poly(ε-caprolactone)-block-polybutadiene and Polybutadiene Homopolymer. Macromolecules 40:5014–5022

    CAS  Google Scholar 

  47. Ahmed DS, El-Hiti GA, Yousif E, Ali AA, Hameed AS (2018) Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. J Polym Res 25:75

    Google Scholar 

  48. Zhang J, Qiao ZA, Mahurin SM, Jiang X, Chai SH, Lu H, Nelson K, Dai S (2015) Hypercrosslinked phenolic polymers with well-developed Mesoporous frameworks. Angew Chem Int Ed 54:4582–4586

    CAS  Google Scholar 

  49. Li G, Zhang B, Yan J, Wang Z (2014) Tetraphenyladamantane-based Polyaminals for highly efficient captures of CO2 and organic vapors. Macromolecules 47:6664–6670

    CAS  Google Scholar 

  50. Yu L, Hu L, Anasori B, Liu YT, Zhu Q, Zhang P, Gogotsi Y, Xu B (2018) MXene-bonded activated carbon as a flexible electrode for high-performance Supercapacitors. ACS Energy Lett 3:1597–1603

    CAS  Google Scholar 

  51. Farzana R, Rajarao R, Bhat BR, Sahajwalla V (2018) Performance of an activated carbon Supercapacitor electrode synthesised from waste compact discs (CDs). J Ind Eng Chem 65:387–396

    CAS  Google Scholar 

  52. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for Supercapacitors: a review. Renew Sust Energ Rev 52:1282–1293

    CAS  Google Scholar 

  53. Wang D, Fang G, Xue T, Ma J, Geng GA (2016) Melt route for the synthesis of activated carbon derived from carton box for high performance symmetric Supercapacitor applications. J. Power Sources 307:401–409

    CAS  Google Scholar 

  54. Zhou X, Chen Q, Wang A, Xu J, Wu S, Shen J (2016) Bamboo-like composites of V2O5 /Polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric Supercapacitors. ACS Appl Mater Interfaces 8:3776–3783

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Ministry of Science and Technology, Taiwan, under contracts MOST 106-2221-E-110- 067-MY3, 108-2638-E-002-003-MY2, and 108-2221-E-110 -014-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiao-Wei Kuo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, WS., Ahmed, M.M., Mohamed, M.G. et al. Competing hydrogen bonding produces mesoporous/macroporous carbons templated by a high-molecular-weight poly(caprolactone–b–ethylene oxide–b–caprolactone) triblock copolymer. J Polym Res 27, 173 (2020). https://doi.org/10.1007/s10965-020-02154-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02154-w

Keywords

Navigation