Skip to main content
Log in

Graphene-Silica Hybrids Fillers for Multifunctional Solution Styrene Butadiene Rubber

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A nanohybrid filler of functionalized graphene created with eco-friendly coupling agents (ECAs) and silica was fabricated by decorating silica onto graphene through a sol-gel process. To do this, relatively large high-quality graphene flakes with an extremely low oxygen content were fabricated using a ternary graphite intercalation compound method. The ECAs with hydrophobic and the hydrophilic groups mitigate graphene aggregation while also acting as an interfacial or bridging material. Furthermore, graphene-silica nanohybrids (GSNs) were incorporated by compounding to solution-styrene-butadiene rubber (SSBR) through mechanical mixing. The GSN-embedded SSBR matrix shows remarkable enhancements in the mechanical properties, thermal and electrical conductivities, and the gas barrier properties, even at a low loading rate, due to the efficient dispersion of GSNs, which enhances the interaction with the rubber matrix. The incorporation of GSNs improved the storage modulus considerably upon evolution of the filler network and with the creation of a crosslinking network of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bindu P, Thomas S (2013) Viscoelastic Behavior and Reinforcement Mechanism in Rubber Nanocomposites in the Vicinity of Spherical Nanoparticles. J Phys Chem B 117:12632–12648

    Article  CAS  Google Scholar 

  2. Lee CK, Seo JG, Kim HJ, Song SH (2019) Novel green composites from styrene butadiene rubber and palm oil derivatives for high performance tires. J Appl Polym Sci 136:47672

    Article  Google Scholar 

  3. Srinivasarao Y, Ri HYS, Han CC, Nandakumar K, Sabu T (2013) Electrical Properties of Graphene Filled Natural Rubber Composites. Adv Mater Res 812:263–266

    Article  Google Scholar 

  4. Song SH (2017) Synergistic effect of carbon nanofiber decorated with iron oxide in enhancing properties of styrene butadiene rubber nanocomposites. J Appl Polym Sci 134:45376

    Article  Google Scholar 

  5. Lee D, Kwon O, Song S (2017) Tailoring the performance of magnetic elastomers containing Fe2O3decorated carbon nanofiber. RSC Adv 7:45595–45600

    Article  CAS  Google Scholar 

  6. Abraham J, Maria HJ, George SC, Kalarikkal N, Thomas S (2015) Transport characteristics of organic solvents through carbon nanotube filled styrene butadiene rubber nanocomposites: the influence of rubber–filler interaction, the degree of reinforcement and morphology. Phys Chem Chem Phys 17:11217–11228

    Article  CAS  Google Scholar 

  7. Li Y, Han B, Liu L, Zhang F, Zhang L, Wen S, Lu Y, Yang H, Shen J (2013) Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica. Compos Sci Technol 88:69–75

    Article  CAS  Google Scholar 

  8. Lee D, Lee KS, Kim NC, Song C, Song SH (2017) Transition of magnetism in graphene coated with metal nanoparticles. Fun Mater Lett 10:1750037

    Article  CAS  Google Scholar 

  9. Kim K, Lee JY, Choi BJ, Seo B, Kwag GH, Paik HJ, Kim W (2014) Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: dispersion of silica particles and dynamic mechanical properties. Compos Int 21:685–702

    Article  CAS  Google Scholar 

  10. Song SH (2016) Synergistic Effect of Clay Platelets and Carbon Nanotubes in Styrene-Butadiene Rubber Nanocomposites. Macromol Chem Phys 217:2617–2625

    Article  CAS  Google Scholar 

  11. Ansarifar A, Wang L, Ellis RJ, Kirtley SP (2006). Rubber Chem Technol 79:537–547

    Article  Google Scholar 

  12. Bertora A, Castellano M, Marsano E, Alessi M, Conzatti L, Stagnaro P, Colucci G, Priola A, Turturro A (2011) A New Modifier for Silica in Reinforcing SBR Elastomers for the Tyre Industry. Macromol Mater Eng 296:455–464

    Article  CAS  Google Scholar 

  13. Stöckelhuber KW, Svistkov AS, Pelevin AG, Heinrich G (2013). Macromolecules 44:4366–4381

    Article  Google Scholar 

  14. Liu YH, Lin HP, Mou CY (2004) Direct Method for Surface Silyl Functionalization of Mesoporous Silica. Langmuir 20:3231–3239

    Article  CAS  Google Scholar 

  15. Rao AV, Kulkarni M, Amalnerkar DP, Seth T (2003) Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl Surf Sci 206:262–270

    Article  CAS  Google Scholar 

  16. Pan Q, Wang B, Chen Z, Zhao J (2013) Reinforcement and antioxidation effects of antioxidant functionalized silica in styrene–butadiene rubber. Mater Design 50:558–565

    Article  CAS  Google Scholar 

  17. Lei HX, Huang GS, Weng GS (2013) Synthesis of a New Nanosilica-Based Antioxidant and Its Influence on the Anti-Oxidation Performance of Natural Rubber. J Macromol Sci B 52:84–89

    Article  CAS  Google Scholar 

  18. Gao X, Meng X, Wang H, Wen B, Ding Y, Zhang S, Yang M (2008) Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene. Polym Degrad Stabil 93:1467–1471

    Article  CAS  Google Scholar 

  19. Liu X, Zhao SH, Zhang XY, Li XL, Bai Y (2014) Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites. Polymer 55:1964–1976

    Article  CAS  Google Scholar 

  20. Song SH, (2018). Int J Polym Sci 2018:8

  21. Seo B, Kim K, Lee H, Lee J, Kwag G, Kim W (2015) Effect of styrene-butadiene rubber with different macrostructures and functional groups on the dispersion of silica in the compounds. Macromol Res 23:466–473

    Article  CAS  Google Scholar 

  22. Qu L, Wang L, Xie X, Yu G, Bu S (2014) Contribution of silica–rubber interactions on the viscoelastic behaviors of modified solution polymerized styrene butadiene rubbers (M-S-SBRs) filled with silica. RSC Adv 4:64354–64363

    Article  CAS  Google Scholar 

  23. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  24. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  25. Song SH, Jeong HK, Kang YG (2010) Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J Ind Eng Chem 16:1059–1065

    Article  CAS  Google Scholar 

  26. Xing W, Tang M, Wu J, Huang G, Li H, Lei Z, Fu X, Li H (2014) Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Compos Sci Technol 99:67–74

    Article  CAS  Google Scholar 

  27. Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and Exfoliation of Graphene in Rubber by an Ultrasonically-Assisted Latex Mixing and In situ Reduction Process. Macromol Mater Eng 296:590–602

    Article  CAS  Google Scholar 

  28. Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464

    Article  CAS  Google Scholar 

  29. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced Thermal Conductivity of Epoxy-Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-Covalent Functionalization. Adv Mater 25:732–737

    Article  CAS  Google Scholar 

  30. Song SH, Kim JM, Park KH, Lee D, Kwon OS, Kim J, Yoon H, Chen X (2015). RSC Adv 99:81707–81712

    Article  Google Scholar 

  31. Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, Shu Q, Wang C, Wang K, Shen W (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369

    Article  CAS  Google Scholar 

  32. Seo JG, Lee CK, Lee D, Song SH (2018) High-performance tires based on graphene coated with Zn-free coupling agents. J Ind Eng Chem 66:78–85

    Article  CAS  Google Scholar 

  33. Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P, (2004). Appl Phys Lett 85: 2229

  34. Hung M-T, Choi O, Ju YS, Hahn H (2006) Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl Phys Lett 89:023117

    Article  Google Scholar 

  35. Kim JM, Song SH, Im HG, Yoon G, Lee D, Choi C, Kim J, Bae BS, Kang KS, Jeon S (2015) Moisture Barrier Composites Made of Non-Oxidized Graphene Flakes. Small 11:3124–3129

    Article  CAS  Google Scholar 

  36. Lin Y, Zeng Z, Zhu J, Chen S, Yuan X, Liu L (2015) Graphene nanosheets decorated with ZnO nanoparticles: facile synthesis and promising application for enhancing the mechanical and gas barrier properties of rubber nanocomposites. RSC Adv 5:57771–57780

    Article  CAS  Google Scholar 

  37. Ruggerone R, Geiser V, Vacche SD, Leterrier Y, J-Anders E, Månson J-AE (2010) Immobilized Polymer Fraction in Hyperbranched Polymer/Silica Nanocomposite Suspensions. Macromolecules 43:10490–10497

    Article  CAS  Google Scholar 

  38. Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007) The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur Polym J 43:3113–3127

    Article  CAS  Google Scholar 

  39. Lin Y, Liu SQ, Peng J, Liu L (2016) The filler–rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: A quantitative correlation with the constrained region. Compos Part A Appl Sci Manuf 86:19–30

    Article  CAS  Google Scholar 

  40. Losego MD, Moh L, Arpin KA, Cahill DG, Braun PV (2010) Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl Phys Lett 97:011908

    Article  Google Scholar 

  41. Zhang X, Loo LS (2009) Macromolecules 42:5196–5207

  42. Lin Y, Liu S, Peng J, Liu L (2016) Compos Part A-Appl Sci Manuf 86:19–30

  43. Losego MD, Moh L, Arpin KA, Cahill DG, Braun PV (2010) Appl Phys Lett 97:011908–3

  44. Kwon OS, Lee D, Lee SP, Kang YG, Kim NC, Song SH (2016) RSC Adv 6:59970–59975

Download references

Acknowledgments

The research was supported by the International Science and Business Belt Program through the Ministry of Science and ICT (2015-DD-RD-0068-05). Also, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1C1B5076476). Also, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A6A1A03032988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S.H. Graphene-Silica Hybrids Fillers for Multifunctional Solution Styrene Butadiene Rubber. J Polym Res 27, 155 (2020). https://doi.org/10.1007/s10965-020-02140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02140-2

Keywords

Navigation