Skip to main content
Log in

Synthesis and crystallization-driven solution self-assembly of PE-b-PMMA: controlling Micellar morphology through crystallization temperature and molar mass

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Three polyethylene-block-poly(methyl methacrylate) (PE196-b-PMMA62, PE325-b-PMMA91 and PE607-b-PMMA208) crystalline-coil copolymers with very similar block mass ratios (r = MPE/MPMMA = 1) but different molar masses were synthesized by a tri-step reaction procedure. The molecular weight, the molecular structure and the thermal properties of PEn-OH and PEn-b-PMMAm were characterized by gel permeation chromatography (GPC), thermogravimetric analysis (TGA), proton nuclear magnetic resonance (1H NMR), fourier transform infrared spectroscopies (FTIR), and differential scanning calorimetry (DSC), respectively. The self-assembly behaviors of PEn-b-PMMAm in toluene at different crystallization temperatures were investigated by dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experiment results shown that crystallization temperatures and different molar masses exerted remarkable influence on the morphology of the resulting micelles. When the temperature of solvents were 90 °C (T > Tc), PEn-b-PMMAm could self-assemble into three different initial micelles, that is unimer, spherical micelles and large compound micelles. With the decrease of temperature (T < Tc), fibrous, spiral wound fibrous and fusiform aggregates were formed from three initial micelles respectively. In addition, the molar masses of copolymers could influence the stability as well as the disaggregation temperature of the large compound micelles.

The self-assembly morphology of polyethylene-block-poly(methyl methacrylate) (PEn-b-PMMAm) crystalline-coil copolymers in toluene were investigated. When the temperature of solvents were 90 °C (T > Tc), PEn-b-PMMAm could self-assemble into three different initial micelles, that is unimer, spherical micelles and large compound micelles. With the decrease of temperature (T < Tc), fibrous, spiral wound fibrous and fusiform aggregates were transformed from the three initial micelles respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. He WN, Xu JT (2012) Crystallization assisted self-assembly of semicrystalline block copolymers. Prog Polym Sci 37:1350–1400

    CAS  Google Scholar 

  2. He Q, Yuan Y, Chen F, Ma Z, Zhu X, Song R (2017) Polymethylene-b-poly(acrylic acid) diblock copolymers: morphology and crystallization evolution influenced by polyethyene polyamine with dual confinement effects. Polymer 108:322–331

    CAS  Google Scholar 

  3. Xu S, Zhang C, Li L, Zheng S (2017) Polystyrene-block-polyethylene-block-polystyrene triblock copolymers: synthesis and crystallization-driven self-assembly behavior. Polymer 128:1–11

    CAS  Google Scholar 

  4. Raez J, Manners I, Winnik MA (2002) Fiberlike structures from the self-assembly of a highlyasymmetricpoly(ferrocenyldimethylsilane-b-dimethylsiloxane) in dilute solution. Langmuir 18:7229–7239

    CAS  Google Scholar 

  5. Kynaston EL, Gould OEC, Gwyther J, Whittell GR, Winnik MA, Manners I (2015) Fiber-like micelles from the crystallization-driven self-assembly of poly(3-heptylselenophene)-block-polystyrene. Macromol Chem Phys 216:685–695

    CAS  Google Scholar 

  6. Qiu H, Gao Y, Du VA, Harniman R, Winnik MA, Manners I (2015) Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. J Am Chem Soc 137:2375–2385

    CAS  PubMed  Google Scholar 

  7. Hayward DW, Lunn DJ, Seddon A, Finnegan JR, Gould OEC, Magdysyuk O (2018) Structure of the crystalline core of fiber-like polythiophene block copolymer micelles. Macromolecules 51:3097–3106

    CAS  Google Scholar 

  8. Lotz B, Kovacs AJ, Bassett GA, Keller A (1966) Properties of copolymers composed of one poly-ethylene-oxide and one polystyrene block. Kolloid-Zeitschrift und Zeitschrift für Polymere 209:115–128

    CAS  Google Scholar 

  9. Wang J, Zhu W, Peng B, Chen Y (2013) A facile way to prepare crystalline platelets of block copolymers by crystallization-driven self-assembly. Polymer 54:6760–6767

    CAS  Google Scholar 

  10. He F, Gädt T, Manners I, Winnik MA (2011) Fluorescent “barcode” multiblock co-micelles via the living self-assembly of di- and tri-block copolymers with a crystalline core-forming metalloblock. J Am Chem Soc 133:9095–9103

    CAS  PubMed  Google Scholar 

  11. Rupar PA, Cambridge G, Winnik MA, Manners I (2011) Reversible cross-linking of polyisoprene coronas in micelles, block comicelles, and hierarchical micelle architectures using pt(0)-olefin coordination. J Am Chem Soc 133:16947–16957

    CAS  PubMed  Google Scholar 

  12. Qiu H, Cambridge G, Winnik MA, Manners I (2013) Multi-armed micelles and block co-micelles via crystallization-driven self-assembly with homopolymer nanocrystals as initiators. J Am Chem Soc 135:12180–12183

    CAS  PubMed  Google Scholar 

  13. Xu JT, Jin W, Liang GD, Fan ZQ (2005) Crystallization and coalescence of block copolymer micelles in semicrystalline block copolymer/amorphous homopolymer blends. Polymer 46:1709–1716

    CAS  Google Scholar 

  14. Lazzari M, Lopez-Quintela MA (2009) Micellization phenomena in semicrystalline block copolymers: reflexive and critical views on the formation of cylindrical micelles. Macromol Rapid Commun 30:1785–1791

    CAS  PubMed  Google Scholar 

  15. Gädt T, Ieong NS, Cambridge G, Winnik MA, Manners I (2009) Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat Mater 8:144–150

    PubMed  Google Scholar 

  16. Bloksma MM, Höppener S, D'Haese C, Kempe K, Mansfeld U, Paulus RM, Gohy JF, Schubert US, Hoogenboom R (2012) Self-assembly of chiral block and gradient copolymers. Soft Matter 8:165–172

    CAS  Google Scholar 

  17. Petzetakis N, Dove AP, O’Reilly RK (2011) Cylindrical micelles from the living crystallization driven self-assembly of poly(lactide)-containing block copolymers. Chem Sci 2:955–960

    CAS  Google Scholar 

  18. Mihut AM, Crassous JJ, Schmalz H, Drechsler M, Ballauff M (2012) Self-assembly of crystalline-coil diblock copolymers in solution: experimental phase map. Soft Matter 8:3163–3173

    CAS  Google Scholar 

  19. Su M, Huang H, Ma X, Wang Q, Su Z (2013) Poly(2-vinylpyridine)-block-poly(ϵ-caprolactone) single crystals in micellar solution. Macromol Rapid Commun 34:1067–1071

    CAS  PubMed  Google Scholar 

  20. Schacher FH, Bellas V, Winnik MA, Manners I (2013) Synthesis and solution self-assembly of block copolymers with a gradient, crystallizable polyferrocenylsilane core-forming metalloblock. Soft Matter 9:8569–8578

    CAS  Google Scholar 

  21. Qian J, Li X, Lunn DJ, Gwyther J, Hudson ZM, Kynaston E, Rupar PA, Winnik MA, Manners I (2014) Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J Am Chem Soc 136:4121–4124

    CAS  PubMed  Google Scholar 

  22. Pitto-Barry A, Kirby N, Dove AP, O'Reilly RK (2014) Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polym Chem 5:1427–1436

    CAS  Google Scholar 

  23. Wang MJ, Wang H, Chen SC, Chen C, Liu Y (2015) Morphological control of anisotropic self-assemblies from alternating poly(p-dioxanone)-poly(ethylene glycol) multiblock copolymer depending on the combination effect of crystallization and micellization. Langmuir 31:6971–6980

    CAS  PubMed  Google Scholar 

  24. Wang HF, Wu C, Xia GM, Ma Z, Mo G, Song R (2015) Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution. Soft Matter 11:1778–1787

    CAS  PubMed  Google Scholar 

  25. Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA (2007) Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317:644–647

    CAS  PubMed  Google Scholar 

  26. Gao Y, Qiu H, Zhou H, Li X, Harniman R, Winnik MA, Manners I (2015) Crystallization-driven solution self-assembly of block copolymers with a photocleavable junction. J Am Chem Soc 137:2203–2206

    CAS  PubMed  Google Scholar 

  27. Hsiao MS, Yusoff SFM, Winnik MA, Manners I (2014) Crystallization-driven self-assembly of block copolymers with a short crystallizable core-forming segment: controlling micelle morphology through the influence of molar mass and solvent selectivity. Macromolecules 47:2361–2372

    CAS  Google Scholar 

  28. Yin L, Hillmyer MA (2011) Disklike micelles in water from polyethylene-containing diblock copolymers. Macromolecules 44:3021–3028

    CAS  Google Scholar 

  29. Yin L, Lodge TP, Hillmyer MA (2012) A stepwise “micellization–crystallization” route to oblate ellipsoidal, cylindrical, and bilayer micelles with polyethylene cores in water. Macromolecules 45:9460–9467

    CAS  Google Scholar 

  30. Schmelz J, Karg M, Hellweg T, Schmalz H (2011) General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano 5:9523–9534

    CAS  PubMed  Google Scholar 

  31. Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ (2013) Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 54:4059–4077

    CAS  Google Scholar 

  32. Park SY, Kavitha T, Kamal T, Khan W, Shin T, Seong B (2012) Self-assembly of dPS-liquid crystalline diblock copolymer in a nematic liquid crystal solvent. Macromolecules 45:6168–6175

    CAS  Google Scholar 

  33. Islam MT, Kamal T, Shin T, Seong B, Park SY (2014) Self-assembly of a liquid crystal ABA triblock copolymer in a nematic liquid crystal solvent. Polymer 55:3995–4002

    CAS  Google Scholar 

  34. He WN, Xu JT, Du BY, Fan ZQ, Wang X (2010) Inorganic-salt-induced morphological transformation of semicrystalline micelles of PCL-b-PEO block copolymer in aqueous solution. Macromol Chem Phys 211:1909–1916

    CAS  Google Scholar 

  35. Lazzari M, Scalarone D, Vazquez-Vazquez C, López-Quintela MA (2008) Cylindrical micelles from the self-assembly of polyacrylonitrile-based diblock copolymers in nonpolar selective solvents. Macromol Rapid Commun 29:352–357

    CAS  Google Scholar 

  36. Du ZX, Xu JT, Fan ZQ (2007) Micellar morphologies of poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymers in water with a crystalline core. Macromolecules 40:7633–7637

    CAS  Google Scholar 

  37. Lin EK, Gast AP (1996) Semicrystalline diblock copolymer platelets in dilute solution. Macromolecules 29:4432–4441

    CAS  Google Scholar 

  38. Li T, Wang WJ, Liu R, Liang WH, Zhao GF, Li Z, Wu Q, Zhu FM (2009) Double-crystalline polyethylene-b-poly(ethylene oxide) with a linear polyethylene block: synthesis and confined crystallization in self-assembled structure formed from aqueous solution. Macromolecules 42:3804–3810

    CAS  Google Scholar 

  39. Lin MC, Wang YC, Chen HL, Müller AJ, Su CJ, Jeng US (2011) Critical analysis of the crystal orientation behavior in polyethylene-based crystalline-amorphous diblock copolymer. J Phys Chem B 115:2494–2502

    CAS  PubMed  Google Scholar 

  40. Schmelz J, Schedl AE, Steinlein C, Manners I, Schmalz H (2012) Length control and block-type architectures in worm-like micelles with polyethylene cores. J Am Chem Soc 134:14217–14225

    CAS  PubMed  Google Scholar 

  41. Kim YY, Ahn B, Sa S, Jeon M, Roth SV, Kim SY, Ree M (2013) Self-assembly characteristics of a crystalline-morphous diblock copolymer in nanoscale thin films. Macromolecules 46:8235–8244

    CAS  Google Scholar 

  42. Fan B, Liu L, Li JH, Ke XX, Xu JT, Du BY, Fan ZQ (2016) Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block. Soft Matter 12:67–76

    CAS  PubMed  Google Scholar 

  43. Fan B, Wang RY, Wang XY, Xu JT, Du BY, Fan ZQ (2017) Crystallization-driven co-assembly of micrometric polymer hybrid single crystals and nanometric crystalline micelles. Macromolecules 50:2006–2015

    CAS  Google Scholar 

  44. Ding LF, Qian JY, Zhu GJ, Wu XH, Li W, Zhao XZ, Mu JS (2019) Self-assembly of linear-hyperbranched hybrid block polymers: crystallization-driven or solvent-driven? J Polym Res 26:121–128

    Google Scholar 

  45. Qian JY, Ding LF, Zhu GJ, Wu XH, Li W, Zhao XZ, Mu JS (2019) Synthesis and self-assembly of PMMA-b-(u)PE-b-PMMA copolymers: study the aggregate morphology in toluene vapor. J Polym Res 26:148–157

    Google Scholar 

  46. Liu ZS, Yang F, Wu XH, Zhang WC, Zhu GJ, Li W, Gong DL, Mu JS (2016) Polyethylene-block-hyperbranched polyglycerol diblock copolymers: synthesis, thermal property and compatibilization. J Polym Res 23:143–151

    Google Scholar 

  47. Mu JS, Liu JY, Liu SR, Li YS (2009) Copolymerizations of ethylene with α-olefin-ω-ols by highly active vanadium (III) catalysts bearing (N,O) bidentate chelated ligands. Polymer 50:5059–5064

    CAS  Google Scholar 

  48. Mu JS, Yang F, Liu ZS, Li YS (2014) Polyethylene-block-poly (ε-caprolactone) diblock copolymers: synthesis and compatibility. Polym Int 63:2017–2022

    CAS  Google Scholar 

  49. Vilgis T, Halperin A (1991) Aggregation of coil-crystalline block copolymers: equilibrium crystallization. Macromolecules 24:2090–2095

    CAS  Google Scholar 

Download references

Acknowledgements

Funding from the Project of Natural Science Foundation of Zhejiang Province (LY18B040001), the Natural Science Foundation of Ningbo (2019A610149), K. C. Wong Education Foundation, and K. C. Wong Magna Fund, Hong Kong, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Mu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Cheng, S., Hu, Y. et al. Synthesis and crystallization-driven solution self-assembly of PE-b-PMMA: controlling Micellar morphology through crystallization temperature and molar mass. J Polym Res 27, 124 (2020). https://doi.org/10.1007/s10965-020-02124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02124-2

Keywords

Navigation