Skip to main content
Log in

Cellulose-based polymer electrolyte derived from waste coconut husk: residual lignin as a natural plasticizer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

A Correction to this article was published on 02 December 2020

This article has been updated

Abstract

Cellulose was isolated from waste coconut husk (Cocos nucifera) via alkali and single bleaching treatment. The isolated cellulose (CH-A-1B) was found to have residual lignin which imparts amorphous character to the polymer matrix as confirmed by X-ray diffraction analysis (XRD). Fourier transform infrared (FTIR) peak at 1507 cm−1 confirmed the presence of lignin and the appearance of three new peaks at 1320, 1416, and 1595 cm−1 showed successful attachment of carboxymethyl group onto the cellulose backbone. Carboxymethylation of cellulose from CH-A-1B produced carboxymethyl cellulose (CMC) with lower crystallinity compared to that of the double bleaching treatment cellulose (CH-A-2B). The CMC film prepared by solvent-casting method from CH-A-1B using 38 wt% NaOH possessed the highest conductivity of σ = 4.82 × 10−4 mS cm−1. The electrochemical properties of the CMC polymer electrolyte and the degree of crystallinity of the polymer matrix were found to be influenced by the amount of lignin content which acts as a natural plasticizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 02 December 2020

    The original version of this article unfortunately contained many mistakes with regard to some mathematical expressions and to Tables 3 & 5.

Abbreviations

ATR:

attenuated total reflectance

CC:

commercial cellulose

CH:

coconut husk

CI:

crystallinity index

CMC:

carboxymethyl cellulose

CML:

carboxymethyl lignin

CPE:

constant phase element

EIS:

electrochemical impedance

FTIR:

Fourier-transform infrared spectroscopy

LE:

liquid electrolyte

MCA:

monochloroacetic acid

SPE:

solid polymer electrolyte

XRD:

X-ray diffractometry

References

  1. Deshpande R, Pawar O, Kute A (2017) Advancement in the technology of organic light emitting diodes. In: 2017 international conference on innovations in information, embedded and communication systems (ICIIECS), 2017. IEEE, pp 1-5. https://doi.org/10.1109/ICIIECS.2017.8276054

  2. Chakraborty S, Sadhu P, Goswami U (2016) Barriers in the advancement of solar energy in developing countries like India. Problemy Ekorozwoju – Prob Sustain Dev 11(2):75–80

    Google Scholar 

  3. Zhang Z, Zhang X, Chen W, Rasim Y, Salman W, Pan H, Yuan Y, Wang C (2016) A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl Energy 178:177–188. https://doi.org/10.1016/j.apenergy.2016.06.054

    Article  Google Scholar 

  4. Rajarathnam G, Easton M, Schneider M, Masters A, Maschmeyer T, Vassallo A (2016) The influence of ionic liquid additives on zinc half-cell electrochemical performance in zinc/bromine flow batteries. RSC Adv 6(33):27788–27797. https://doi.org/10.1039/C6RA03566C

    Article  CAS  Google Scholar 

  5. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115(11):5159–5223. https://doi.org/10.1021/cr5006217

    Article  CAS  PubMed  Google Scholar 

  6. Dudney N (2000) Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. J Power Sources 89(2):176–179. https://doi.org/10.1016/S0378-7753(00)00427-4

    Article  CAS  Google Scholar 

  7. Abe T, Sagane F, Ohtsuka M, Iriyama Y, Ogumi Z (2005) Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries. J Electrochem Soc 152(11):A2151–A2154. https://doi.org/10.1149/1.2042907

    Article  Google Scholar 

  8. Zhang S (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364. https://doi.org/10.1016/j.jpowsour.2006.10.065

    Article  CAS  Google Scholar 

  9. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148(3–4):405–416. https://doi.org/10.1016/S0167-2738(02)00080-2

    Article  CAS  Google Scholar 

  10. Smitha B, Sridhar S, Khan A (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26. https://doi.org/10.1016/j.memsci.2005.01.035

    Article  CAS  Google Scholar 

  11. Savadogo O (1998) Emerging membrane for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1(1):47–66

    CAS  Google Scholar 

  12. Abraham K, Alamgir M (1990) Li+-conductive solid polymer electrolytes with liquid-like conductivity. J Electrochem Soc 137(5):1657–1658

    Article  CAS  Google Scholar 

  13. Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45(8–9):1501–1508. https://doi.org/10.1016/S0013-4686(99)00365-5

    Article  CAS  Google Scholar 

  14. Nguyen C, Argun A, Hammond P, Lu X, Lee P (2011) Layer-by-layer assembled solid polymer electrolyte for electrochromic devices. Chem Mater 23(8):2142–2149. https://doi.org/10.1021/cm103572q

    Article  CAS  Google Scholar 

  15. Li M, Wang X, Yang Y, Chang Z, Wu Y, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 476:112–118. https://doi.org/10.1016/j.memsci.2014.10.056

    Article  CAS  Google Scholar 

  16. Singh P, Nagarale R, Pandey S, Rhee H, Bhattacharya B (2011) Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes. Adv Nat Sci-Nanosci 2(2):023002. https://doi.org/10.1088/2043-6262/2/2/023002

    Article  Google Scholar 

  17. Rani M, Rudhziah S, Ahmad A, Mohamed N (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9):2371–2385. https://doi.org/10.3390/polym6092371

    Article  CAS  Google Scholar 

  18. Khiar A, Arof A (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16(2):123–129. https://doi.org/10.1007/s11581-009-0356-y

    Article  CAS  Google Scholar 

  19. Gong S, Huang Y, Cao H, Lin Y, Li Y, Tang S, Wang M, Li X (2016) A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources 307:624–633. https://doi.org/10.1016/j.jpowsour.2016.01.030

    Article  CAS  Google Scholar 

  20. Azzahari A, Mutalib NA, Rizwan M, Abouloula C, Selvanathan V, Sonsudin F, Yahya R (2018) Improved ionic conductivity in guar gum succinate–based polymer electrolyte membrane. High Perform Polym 30(8):993–1001. https://doi.org/10.1177/0954008318775790

    Article  CAS  Google Scholar 

  21. Abouloula C, Rizwan M, Selvanathan V, Abdullah C, Hassan A, Yahya R, Oueriagli A (2018) A novel application for oil palm empty fruit bunch: extraction and modification of cellulose for solid polymer electrolyte. Ionics 24(12):3827–3836. https://doi.org/10.1007/s11581-018-2558-7

    Article  CAS  Google Scholar 

  22. Rosa M, Medeiros E, Malmonge J, Gregorski K, Wood D, Mattoso L, Glenn G, Orts W, Imam S (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

    Article  CAS  Google Scholar 

  23. Singh R, Singh A (2013) Optimization of reaction conditions for preparing carboxymethyl cellulose from corn cobic agricultural waste. Waste Biomass Valorization 4(1):129–137. https://doi.org/10.1007/s12649-012-9123-9

    Article  CAS  Google Scholar 

  24. Rasali N, Muzakir SK, Samsudin A (2017) A study on dielectric properties of the cellulose derivative-NH4Br-glycerol-based the solid polymer electrolyte system. Makara J Technol 21(2):65–69. https://doi.org/10.7454/mst.v21i2.3082

    Article  Google Scholar 

  25. Regiani A, Machado GO, LeNest J-F, Gandini A, Pawlicka A (2001) Cellulose derivatives as solid electrolyte matrixes. Macromol Symp 175(1):45–54. https://doi.org/10.1002/1521-3900(200110)175:1<45::AID-MASY45>3.0.CO;2-M

    Article  CAS  Google Scholar 

  26. Zainuddin N, Saadiah M, Majeed AA, Samsudin A (2018) Characterization on conduction properties of carboxymethyl cellulose/kappa carrageenan blend-based polymer electrolyte system. Int J Polym Anal Charact 23(4):321–330. https://doi.org/10.1080/1023666X.2018.1446887

    Article  CAS  Google Scholar 

  27. Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose. Springer, pp 25–71. https://doi.org/10.1007/978-94-007-6898-7_2

  28. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. J ACS Sustain Chem Eng Mining J 2(5):1072–1092. https://doi.org/10.1021/sc500087z

    Article  CAS  Google Scholar 

  29. Samsudin A, Isa M Conductivity and transport properties study of plasticized carboxymethyl cellulose (CMC) based solid biopolymer electrolytes (SBE). In: Advanced Materials Research, 2014. Trans Tech Publ, pp 118–122. https://doi.org/10.4028/www.scientific.net/AMR.856.118

  30. Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18(2):443–450. https://doi.org/10.1007/s10570-010-9480-0

    Article  CAS  Google Scholar 

  31. Pushpamalar V, Langford S, Ahmad M, Lim Y (2006) Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr Polym 64(2):312–318. https://doi.org/10.1016/j.carbpol.2005.12.003

    Article  CAS  Google Scholar 

  32. Cerrutti B, Souza CD, Castellan A, Ruggiero R, Frollini E (2012) Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions. Ind Crop Prod 36(1):108–115. https://doi.org/10.1016/j.indcrop.2011.08.015

    Article  CAS  Google Scholar 

  33. Gan L, Zhou M, Qiu X Preparation of water-soluble carboxymethylated lignin from wheat straw alkali lignin. In: Advanced Materials Research, 2012. pp 1293–1298. https://doi.org/10.4028/www.scientific.net/AMR.550-553.1293, Preparation of Water-Soluble Carboxymethylated Lignin from Wheat Straw Alkali Lignin

  34. Jin Z, Katsumata K, Lam T, Iiyama K (2006) Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers: Orig Res Biomolec 83(2):103–110. https://doi.org/10.1002/bip.20533

    Article  CAS  Google Scholar 

  35. Thakur V, Ding G, Ma J, Lee P, Lu X (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24(30):4071–4096. https://doi.org/10.1002/adma.201200213

    Article  CAS  PubMed  Google Scholar 

  36. Machado G, Ferreira H, Pawlicka A (2005) Influence of plasticizer contents on the properties of HEC-based solid polymeric electrolytes. Electrochim Acta 50(19):3827–3831. https://doi.org/10.1016/j.electacta.2005.02.041

    Article  CAS  Google Scholar 

  37. Lee B, Oh E (2013) Effect of molecular weight and degree of substitution of a sodium-carboxymethyl cellulose binder on Li4Ti5O12 anodic performance. J Phys Chem C 117(9):4404–4409. https://doi.org/10.1021/jp311678p

    Article  CAS  Google Scholar 

  38. Segal L, Creely J, Martin Jr AE, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  39. Kim J, Netravali A (2013) Fabrication of advanced “green” composites using potassium hydroxide (KOH) treated liquid crystalline (LC) cellulose fibers. J Mater Sci 48(11):3950–3957. https://doi.org/10.1007/s10853-013-7199-7

    Article  CAS  Google Scholar 

  40. Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee C, Dazen K, Kafle K, Moore A, Johnson D, Park S, Kim S (2015) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. In: cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, pp 115-131. https://doi.org/10.1007/12_2015_320

  42. Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5(4):1385–1391. https://doi.org/10.1021/bm0345357

    Article  CAS  PubMed  Google Scholar 

  43. Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8(1):6538. https://doi.org/10.1038/s41598-018-24328-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yadav M, Rhee K, Jung I, Park S (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20(2):687–698. https://doi.org/10.1007/s10570-012-9855-5

    Article  CAS  Google Scholar 

  45. Calcagnile P, Cacciatore G, Demitri C, Montagna F, Corcione CE (2018) A feasibility study of processing polydimethylsiloxane–sodium carboxymethylcellulose composites by a low-cost fused deposition modeling 3D printer. Materials 11(9):1578. https://doi.org/10.3390/ma11091578

    Article  CAS  PubMed Central  Google Scholar 

  46. Doh S, Lee J, Lim D, Im J (2013) Manufacturing and analyses of wet-laid nonwoven consisting of carboxymethyl cellulose fibers. Fiber Polym 14(12):2176–2184. https://doi.org/10.1007/s12221-013-2176-y

    Article  CAS  Google Scholar 

  47. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069. https://doi.org/10.1039/C6TA02621D

    Article  CAS  Google Scholar 

  48. Arof A, Amirudin S, Yusof S, Noor I (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867. https://doi.org/10.1039/C3CP53830C

    Article  CAS  PubMed  Google Scholar 

  49. Teo L, Buraidah M, Nor A, Majid S (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18(7):655–665. https://doi.org/10.1007/s11581-012-0667-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from Universiti Malaya through FG031-17AFR and the kind support from Dr. Izlina Binti Supa’at from Centre for Foundation Studies in Science, Universiti Malaya for the usage of the grinding machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiyah Yahya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, K.Y., Azzahari, A.D., Abouloula, C.N. et al. Cellulose-based polymer electrolyte derived from waste coconut husk: residual lignin as a natural plasticizer. J Polym Res 27, 115 (2020). https://doi.org/10.1007/s10965-020-02110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02110-8

Keywords

Navigation