Skip to main content
Log in

Hybrid micro-emulsion of aniline in sodium dodecyl sulfate micellar solution and sulfonic acids: morphology, electrical, thermal and kinetic studies

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present work, aims to study the reaction kinetics parameters, morphology, electrical and thermal properties of aniline during its hybrid micro-emulsion polymerization in presence of 1.5 naphthalene sulfonic acid (1.5 NDSA) and dodecylbenzene sulfonic acid (DBSA) used alone or in combination with sodium dodecyl sulfate (SDS) surfactant. FTIR, UV-visible, SEM, electrical conductivity and differential scanning calorimetry characterizations revealed that combinations of 1.5 NDSA/SDS and DBSA/SDS led to the appearance of nanometric morphology having a respective size around of (190–200) nm and, (60, 250, 300–550) nm. Electrical conductivity was found to be strongly dependent on the SDS added amount, where the maximum values of 80.4 S/cm2 has been obtained in the case of 1.5 NDSA/SDS system. A mechanism based on the micelles collision theory has been adopted to explain properties related to the nanometric size of polyaniline and the enhancement of their electrical conductivity. Activation energies according to methods of Chen and Ozawa has shown a good thermal stability of polyaniline samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang L, Li X-G, Yang Y (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47:125–139

    CAS  Google Scholar 

  2. Huang J (2006) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem 78(1):15–27

    CAS  Google Scholar 

  3. He C, Yang C, Li Y (2003) Chemical synthesis of coral-like nanowires and nanowire networks of conducting polypyrrole. Synth Met 139:539–545

    CAS  Google Scholar 

  4. Reungurai A, Prom-Jun A, Prissanaroon-Ouajai W, Ouajai S (2008) Synthesis of highly conductive polypyrrole nanoparticles via microemulsion polymerization. Journal of Metals, Materials and Minerals 18(2):27–31

    Google Scholar 

  5. Paul RK, Pillai CKS (2001) Thermal properties of processable polyaniline with novel sulfonic acid dopants. Polym Int 50:381–386

    CAS  Google Scholar 

  6. Mettai B, Mekki A, Merdj F, Sayah ZBD, Kouadri Moustefai S et al (2018) In situ chemical deposition of PPy/NDSA and PPy/DBSA layers on QCM electrodes: synthesis, structural, morphological and ammonia sensing performances study. J Polym Res 25:95–106

    Google Scholar 

  7. Percino MJ, Chapela VM (2013) Conducting polymers. In: Handbook of polymer synthesis, characterization, and processing, first edition, published by john wiley and sons

  8. Patil AJ, Deogaonkar SC (2012) A novel method of in situ chemical polymerization of polyaniline for synthesis of electrically conductive cotton fabrics. Text Res J 82(15):1517–1530

    Google Scholar 

  9. Skotheim TA, Reynolds JR (2007) Handbook of conducting polymers, conjugated polymers: theory, properties and characterization3rd edn. CRC Press, Boca Raton, p 1238

    Google Scholar 

  10. Masudaa H, Asanob DK (2003) Preparation and properties of polypyrrole. Synth Met 135-136:43–44

    Google Scholar 

  11. Martin R, Parthasarathy R, Menon V (1993) Template synthesis of electronically conductive polymers - a new route for achieving higher electronic conductivities. Synth Met 55-57:1165–1170

    Google Scholar 

  12. Wan M (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20:2926–2932

    CAS  Google Scholar 

  13. Zenga F, Qin Z, Liang B, Li T, Liu N, Zhu M (2015) Polyaniline nanostructures tuning with oxidants in interfacial polymerization system. Progress in Natural Science: Materials International

  14. Kim Y, Fukai S, Kobayashi N (2001) Photopolymerization of aniline derivatives in solid state and its application. Synth Met 119:1–3

    Google Scholar 

  15. Osterholm E, Cao Y, Klavetter F, Smith P (1993) Emulsion polymerization of aniline. Synth Met 55-57:1034–1039

    Google Scholar 

  16. Marie E, Rothe R, Antonietti M, Landfester K (2003) Synthesis of Polyaniline particles via inverse and direct miniemulsion. Macromolecules 36:3967–3973

    CAS  Google Scholar 

  17. Trevino-Martinez ME, del Angel-Vargas Y, Ramos-de Valle LF, Lopez-Campos RG (2005) Synthesis of elastomeric nanoparticles via microemulsion polymerization. J Vinyl Addit Technol

  18. Kim B-J, Oh S-G, Han M-G, Im S-S (2000) Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. Langmuir 16:5841–5845

    CAS  Google Scholar 

  19. Stejskal J, Hlavata D, Holler P, Trchova M, Prokes J, Sapurina I (2004) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53:294–300

    CAS  Google Scholar 

  20. Kuczynska A, Uygun A, Kaim A, Wilczura-Wachnik H, Gul Yavuz A, Aldissi M (2010) Effects of surfactants on the characteristics and biosensing properties of polyaniline. Polym Int 59:1650–1659

    CAS  Google Scholar 

  21. Wei ZX, Zhang ZM, Wan MX (2002) Formation mechanism of self-assembled polyaniline micro-nanotubes. Langmuir 18:917–921

    CAS  Google Scholar 

  22. Huang J, Wan M (1999) Polyaniline doped with different sulfonic acids by in situ doping polymerization. J Polym Sci A Polym Chem 37:1277–1284

    CAS  Google Scholar 

  23. Wang J, Wang Z, Zhang F (2009) A template free metod toward urchin like polyaniline microspheres. Macromol Rapid Commun 30:604–608

    CAS  PubMed  Google Scholar 

  24. Long Y, Zhang L, Ma Y, Chen Z, Wang N, Zhang Z, Wan M (2003) Electrical conductivity of an individual polyaniline nanotube synthesized by a self –assembly method. Macromol Rapid Commun 24:938–942

    CAS  Google Scholar 

  25. Song M-K, Kim B-S, Kim J, Char K, Rhee H-W (2004) Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. Synth Met 141:315–319

    CAS  Google Scholar 

  26. Akmil Mustaffa N, Asyadi Azam M, Chuah Abdullah L (2017) Dodecylbenzene sulfonic acid concentration effect on electrical and thermal properties of polyaniline. Malaysian Journal of Analytical Sciences 21(4):950–957

    Google Scholar 

  27. Kinlen PJ, Liu J, Ding Y, Graham CR, Remsen EE (1998) Emulsion polymerization process for organically soluble and electrically conducting polyaniline. Macromolecules 31:1735–1744

    CAS  Google Scholar 

  28. Wan M (2008) Template free method to conducting polymer micro-nanostructures. Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

  29. Wan M, Huang J, Shen Y (1999) Microtubes of conducting polymers. Synthetic Metals 101:708–711

    CAS  Google Scholar 

  30. Stejskal J, Omastova M, Fedorov S, Prokes J, Trchova M (2003) Polyaniline and polypyrrole prepared in the presence of surfactants:comparative conductivity study. Polymer 44:1353–1358

    CAS  Google Scholar 

  31. Jang J, Ha J, Kim S (2007) Fabrication of polyaniline nanoparticules using microemulsion polymerization. Macro Molecular Research 15(2):154–159

    CAS  Google Scholar 

  32. Archana S, Jaya Shanthi R (2013) Effect of surfactant on the chemical polymerization of o-Phenylenediamine- A comparative study. Indian Journal of Advances in Chemical Science 2(1):83–88

    Google Scholar 

  33. Kuramoto N, Geniès EM (1995) Micellar chemical polymerization of aniline. Synth Met 68:191–194

    CAS  Google Scholar 

  34. Wang Q, Li L, Liu E, Xu Y, Liu J (2006) Effects of SDS on the sol-gel transition of methylcellulose in water. Polymer 47:1372–1378

    CAS  Google Scholar 

  35. Lin Y-C, Hao Hsu F, Wu T-M (2013) Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth Met 164:29–34

    Google Scholar 

  36. Arenas MC, Andablo E, Castano VM (2010) Synthesis of conducting polyaniline nanofibers from single and binary dopant agents. J Nanosci Nanotechnol 10:549–554

    CAS  PubMed  Google Scholar 

  37. Zhou C, Han J, Guo R (2009) Synthesis of polyaniline hierarchical structures in a dilute SDS/HCl. Macromolecules 42:1252–1257

    CAS  Google Scholar 

  38. Mo Z-H, Qiu W, Yang X-C, Yan J, Gu Z-d (2009) Morphological characterization and kinetics study of polyaniline film formation by emulsion polymerization. J Polym Res 16:39–43

    CAS  Google Scholar 

  39. Kohut-Svelko N, Reynaud S, François J (2005) Synthesis and characterization of polyaniline prepared in the presence of nonionic surfactants in an aqueous dispersion. Synth Met 150:107–114

    CAS  Google Scholar 

  40. W-Yi S, Liang F-Y, Ma L (2012) Kinetic study of polyaniline film formation using ferric chloride/ammonium persulfate as composite oxidant. Int J Polym Anal Charact 17:93–103

    Google Scholar 

  41. Hsieh B-Z, Chuang H-Y, Chao L, Li Y-J, Huang Y-J, Tseng P-H, Hsieh T-H, Ho K-S (2008) Formation mechanism of a nanotubular polyanilines prepared by an emulsion polymerization without organic solvent. Polymer 49:4218–4225

    CAS  Google Scholar 

  42. Huang J, Wan M (1998) Temperature and pressure dependence of conductivity of polyaniline synthesized by in situ doping polymerization in the presence of organic function acid as dopants. Solid State Commun 108(4):255–259

    CAS  Google Scholar 

  43. Pirhady Tavandashti N, Ghorbania M, Shojaei A (2015) Morphology transition control of polyaniline from nanotubes to nanospheres in a soft template method. Polym Int 64:88–95

    CAS  Google Scholar 

  44. Zhang Z, Wei Z, Zhang L, Wan M (2005) Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Mater 53:1373–1379

    CAS  Google Scholar 

  45. Zhang L, Wan M, Wei Y (2006) Nanoscaled polyaniline fibers prepared by ferric chloride as an oxidant. Macromol Rapid Commun 27:366–371

    CAS  Google Scholar 

  46. Jeevananda T, Hee Lee J, Siddaramaiah (2008) Preparation of polyaniline nanostructures using sodium dodecylsulphate. Mater Lett 62:3995–3998

    CAS  Google Scholar 

  47. Mallick K, Witcomb M, Erasmus R, Strydom A (2010) Electrical and optical properties of Polyaniline with a Weblike morphology. J Appl Polym Sci 116:1587–1592

    CAS  Google Scholar 

  48. Han Y-G, Kusunose T, Sekino T (2009) Facile one-pot synthesis and characterization of novel nanostructured organic dispersible polyaniline. J Poly Sci B Polym Phys 47:1024–1029

    CAS  Google Scholar 

  49. Manaf A, Hafizah MAE, Riyadi AF, Andreas (2019) Electrical conductivity of polyaniline (PANI) assisted by anionic surfactant through emulsion polymerization technique. J Phys Conf Ser 1153

  50. Hassan PA, Sawant SN, Bagkar NC, Yakhmi JV (2004) Polyaniline nanoparticles prepared in Rodlike Micelles. Langmuir 20:4874–4880

    CAS  PubMed  Google Scholar 

  51. Chen HS (1978) A method for evaluating viscosities of metallic glasses from the rates of thermal transformations. J Non-Cryst Solids 27(2):257–263

    CAS  Google Scholar 

  52. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    CAS  Google Scholar 

  53. Kim B-J, Im S-S, Oh S-G (2001) Investigation on the solubilization locus of aniline-HCl salt in SDS micelles with 1HNMR spectroscopy. Langmuir 17:565–566

    CAS  Google Scholar 

  54. Kuramoto N, Teramae K (1998) Preparation of Processable Polyaniline doped and Complexed with anionic surfactant. Polym Adv Technol 9:222–226

    CAS  Google Scholar 

  55. Sapurina IY, Stejskal J (2010) The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russ Chem Rev 79(12):1123–1143

    CAS  Google Scholar 

  56. Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    CAS  Google Scholar 

  57. Marjanovic GC, Trchova M, Stejskal J (2008) The chemical oxidative polymerization of aniline in water. J Raman Spectrosc 39:1375–1387

    Google Scholar 

  58. Stejskal J, Gilbert RG (2002) Polyaniline.preparation of conducting polymer (IUPAC Technical Report). Pure Appl Chem 74(5):857–867

    CAS  Google Scholar 

  59. Sapurina I, Stejskal J (2008) Review: the mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325

    CAS  Google Scholar 

  60. Stejskal J, Trchova M, Konyushenko EN, Holler P (2006) The genesis of polyaniline nanotubes. Polymer. 47:8253–8262

    CAS  Google Scholar 

  61. Trchovà M, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes. Pure Appl Chem 83:1803

    Google Scholar 

  62. Dallas P, Stamopoulos D, Boukos N, Tzitzios V, Niarchos D, Petridis D (2007) Characterization, magnetic and transport properties of polyaniline synthesizer through interfacial polymerization. Polymer 48:3162–3169

    CAS  Google Scholar 

  63. Huang WS, Macdiarmid AG (1993) Optical properties of polyaniline. Polymer 34:1833

    CAS  Google Scholar 

  64. Cao Y, Xuea ZJ, Guo D (1986) Spectroscopic and electrical characterization of some aniline oligomers and polyaniline. Synthetic Metats 16(3):305–315

    Google Scholar 

  65. Bairi VG, Bourdo SE, Moore JA, Schunackenberg LK, Berry BC, Biris AS, Viswanathan T (2013) Separation and spectroscopic/molecular weight snalysis of crude and purified polyaniline(s). Polymer Research 20

  66. Alves KGB, de Melo EF, Andrade CAS, de Melo CP (2013) Preparation of fluorescent polyaniline nanoparticles in aqueous solutions. J Nanopart Res 15:1339–1351

    Google Scholar 

  67. Mazzeu AC, Faria LK, Baldan MR, Rezende MC, Gonçalves ES (2018) Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale. Braz J Chem Eng 35:123–130

    CAS  Google Scholar 

  68. Bilal S, Gul S, Shah A-u-H A (2015) Calculation of particle size distribution of polyaniline salts using imageJ. Journal of Scientific and Innovative Research 4(1):17–21

    Google Scholar 

  69. Stejskal J, Trchovà M (2012) Aniline oligomers versus polyaniline. Polym Int 61:240–251

    CAS  Google Scholar 

  70. Longa Y-Z, Li M-M, Gub C, Wanc M, Duvaild J-L, Liue Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442

    Google Scholar 

  71. Guettari M, Aferni AEL, Tajouri T (2017) Effect of micellar collisions and polyvinylpyrrolidone confinement on the electrical, conductivity percolation parameters of water/AOT/isooctane reverse micelle. Molecular Structure 1149:712–719

    CAS  Google Scholar 

  72. Chaqmaqchee FAI, Baker AG (2015) Study and characterization of polyaniline at various doping of LiCl wt.% using electrical measurements and XRF analysis. Journal of Research Updates in Polymer Science 4:188–190

    CAS  Google Scholar 

  73. Mekki A, Mettai B, Ihdene Z, Mahmoud R, Mekhalif Z (2013) Inverse gas chromatography characterization of polyaniline complexes: application to volatile organic compounds sensing. Iran Polym J 22:677–687

    CAS  Google Scholar 

  74. Chen C (2002) Thermal studies of Polyaniline doped with dodecyl benzene sulfonic acid directly prepared via aqueous dispersions. J Polym Res 9:195–200

    CAS  Google Scholar 

  75. Sayyah SM, Abd El-Khalek AA, Bahgat AA, Abd El-Salam HM (2001) Kinetic studies of the polymerization of substituted aniline in aqueous solution s and characterization of the polymer obtained part 2: 3-methylaniline. Int J Polym Mater 49:25–49

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Ecole Militaire Polytechnique through project N°01/17/DRFPG/CMDT. Mohamed Bounedjar. Thanks Ecole Militaire Polytechnique for the provision of a Ph.D. scholarship. The authors are also grateful to the DGRSDT/MESRS for providing assistance to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mekki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounedjar, M., Naar, N. & Mekki, A. Hybrid micro-emulsion of aniline in sodium dodecyl sulfate micellar solution and sulfonic acids: morphology, electrical, thermal and kinetic studies. J Polym Res 27, 110 (2020). https://doi.org/10.1007/s10965-020-02099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02099-0

Keywords

Navigation