Skip to main content
Log in

Mechanical study and molecular dynamics simulation on polycarbonate nanocomposite with carbon black and SnO2

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, SnO2 and carbon black (CB) nanoparticles (NPs) were used to improve the physical and mechanical properties of polycarbonate films (PC) for industrial applications. Raman spectroscopy proved the successful inclusion of the fillers within the polymeric-based nanocomposites, with a suitable dispersion without changes in the structure and morphology of PC as denoted by scanning electron microscopy (SEM) and X-ray diffraction (XRD). After doping of the PC-based nanocomposites with CB, SnO2 and CB/SnO2 NPs, both the polymer hardness and the elastic modulus of the composites were observed to increase, with the highest value achieved for PC/CB-doped ones. Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DTG) indicated changes in the thermal properties of the polymer composites upon NP doping. Finally, molecular dynamics simulations were used to gain a better understanding about the interactions of PC and NPs in the nanocomposites. Simulation data obtained were in good agreement with experimental ones, which indicates that simulations can be an efficient toll in order to perform a preliminary high-throughput screening of diverse physico-chemical properties of polymeric-based nanocomposites bearing NP fillers before experimental development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Eskandari M, Najafi Liavali M, Malekfar R, Taboada P (2020) Investigation of Optical Properties of Polycarbonate/TiO2/ZnO Nanocomposite: Experimental and DFT Calculations. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01644-0

  2. Wen T, Guo Y, Song S, Sun S, Zhang H (2015) Inhibited transesterification on the properties of reactive core-shell particles toughened poly(butylene terephthalate) and polycarbonate blends. J Polym Res 22:1–10. https://doi.org/10.1007/s10965-015-0869-1

    Article  CAS  Google Scholar 

  3. Bao D, Liao X, He T, Yang Q, Li G (2013) Preparation of nanocellular foams from polycarbonate/poly(lactic acid) blend by using supercritical carbon dioxide. J Polym Res 20. https://doi.org/10.1007/s10965-013-0290-6

  4. Jiang L, Zhou M, Ding Y, Zhou Y, Dan Y (2018) Aging induced ductile-brittle-ductile transition in bisphenol a polycarbonate. J Polym Res 25:1–9. https://doi.org/10.1007/s10965-018-1443-4

    Article  CAS  Google Scholar 

  5. Sako T, Ito A, Yamaguchi M (2017) Surface segregation during injection molding of polycarbonate/poly (methyl methacrylate) blend. J Polym Res 24:2–6. https://doi.org/10.1007/s10965-017-1251-2

    Article  CAS  Google Scholar 

  6. Ongaro M, Signoretto M, Trevisan V, Stortini A, Ugo P (2015) Arrays of TiO2 nanowires as Photoelectrochemical sensors for hydrazine detection. Chemosensors 3:146–156. https://doi.org/10.3390/chemosensors3020146

    Article  CAS  Google Scholar 

  7. Jaleh B, Shahbazi N, Jabbari A (2016) Optical and thermal properties of polycarbonate-TiO2 Nanocomposite film. Synth React Inorg Met Nano-Metal Chem 46:602–607. https://doi.org/10.1080/15533174.2014.988821

    Article  CAS  Google Scholar 

  8. Arlinghaus FJ (1974) Energy bands in stannic oxide (SnO2). J Phys Chem Solids 35:931–935. https://doi.org/10.1016/S0022-3697(74)80102-2

    Article  CAS  Google Scholar 

  9. Yuliarto B, Gumilar G, Septiani NLW (2015) SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism. Adv Mater Sci Eng 2015:1–14. https://doi.org/10.1155/2015/694823

    Article  CAS  Google Scholar 

  10. Jubault M, Pulpytel J, Cachet H, Boufendi L, Arefi-Khonsari F (2007) Deposition of SnO2:F thin films on polycarbonate substrates by PECVD for antifouling properties. Plasma Process Polym 4:330–335. https://doi.org/10.1002/ppap.200730903

    Article  Google Scholar 

  11. Ramesan MT (2005) The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites. J Polym Res 11:333–340. https://doi.org/10.1007/s10965-005-6571-y

    Article  Google Scholar 

  12. Nootsuwan N, Wattanathana W, Jongrungruangchok S, Veranitisagul C, Koonsaeng N, Laobuthee A (2018) Development of novel hybrid materials from polylactic acid and nano-silver coated carbon black with distinct antimicrobial and electrical properties. J Polym Res:25. https://doi.org/10.1007/s10965-018-1484-8

  13. Song J, Zhang W, Yang W, Xu J, Lai J (2014) Rheological properties, morphology, mechanical properties, electrical resistivity and EMI SE of cyclic butylene terephthalate/graphite/carbon black composites. J Polym Res 21. https://doi.org/10.1007/s10965-014-0556-7

  14. Chen Y, Chen Q, Lv Y, Huang Y, Yang Q, Liao X, Niu Y (2015) Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods. J Polym Res:22. https://doi.org/10.1007/s10965-015-0751-1

  15. Motaung TE, Saladino ML, Luyt AS, Martino DC (2013) Influence of the modification, induced by zirconia nanoparticles, on the structure and properties of polycarbonate. Eur Polym J 49:2022–2030. https://doi.org/10.1016/j.eurpolymj.2013.04.019

    Article  CAS  Google Scholar 

  16. Carrión FJ, Sanes J, Bermúdez MD (2007) Effect of ionic liquid on the structure and tribological properties of polycarbonate-zinc oxide nanodispersion. Mater Lett 61:4531–4535. https://doi.org/10.1016/j.matlet.2007.02.044

    Article  CAS  Google Scholar 

  17. Luyt AS, Messori M, Fabbri P, Mofokeng JP, Taurino R, Zanasi T, Pilati F (2011) Polycarbonate reinforced with silica nanoparticles. Polym Bull 66:991–1004. https://doi.org/10.1007/s00289-010-0408-5

    Article  CAS  Google Scholar 

  18. Ikeshima D, Nishimori F, Yonezu A (2019) Deformation modeling of polyamide 6 and the effect of water content using molecular dynamics simulation. J Polym Res 26. https://doi.org/10.1007/s10965-019-1815-4

  19. Yi Y, Bi P, Zhao X, Wang L (2018) Molecular dynamics simulation of diffusion of hydrogen and its isotopic molecule in polystyrene. J Polym Res 25:1–6. https://doi.org/10.1007/s10965-017-1406-1

    Article  CAS  Google Scholar 

  20. Sahputra IH, Echtermeyer AT (2014) Molecular dynamics simulations of strain-controlled fatigue behaviour of amorphous polyethylene. J Polym Res:21. https://doi.org/10.1007/s10965-014-0577-2

  21. Vao-soongnern V, Merat K, Horpibulsuk S (2016) Interaction of the calcium ion with poly(acrylic acid) as investigated by a combination of molecular dynamics simulation and X-ray absorption spectroscopy. J Polym Res 23:1–7. https://doi.org/10.1007/s10965-015-0895-z

    Article  CAS  Google Scholar 

  22. Sharifi S, Yazdani A, Rahimi K (2020) Effect of Co2+ content on supercapacitance properties of hydrothermally synthesized nanoparticles. Mater Sci Semicond Process 108:104902

  23. Khoei AR, Khorrami MS (2016) Mechanical properties of graphene oxide: a molecular dynamics study. Fullerenes Nanotub Carbon Nanostructures 24:113–121. https://doi.org/10.1080/1536383X.2016.1208180

    Article  CAS  Google Scholar 

  24. Mo Y, Zhang H, Xu J (2014) Molecular dynamic simulation of the mechanical properties of PI / SiO 2 nanocomposite based on materials studio. J Chem Pharm Res 6:1534–1539

    Google Scholar 

  25. Fermeglia M, Pricl S (2007) Multiscale modeling for polymer systems of industrial interest. Prog Org Coatings 58:187–199. https://doi.org/10.1016/j.porgcoat.2006.08.028

    Article  CAS  Google Scholar 

  26. Resta V, Quarta G, Lomascolo M, Maruccio L, Calcagnile L (2015) Raman and photoluminescence spectroscopy of polycarbonate matrices irradiated with different energy 28Si+ ions. Vacuum 116:82–89. https://doi.org/10.1016/j.vacuum.2015.03.005

    Article  CAS  Google Scholar 

  27. Lee S, Stolarski V, Letton A, Laane J (2000) Studies of bisphenol-a – polycarbonate aging by Raman difference spectroscopy. J Mol Struct 521:19–23

    Article  CAS  Google Scholar 

  28. Debus J, Dunker D (2012) Raman studies on a heavily distorted polycarbonate sample - Raman-Untersuchungen an einer stark deformierten Polycarbonat-probe. Cond-mat.Mtrl-sci

  29. Dybal J, Schmidt P, Baldrian J, Kratochvı J (1998) Ordered Structures in Polycarbonate Studied by Infrared and Raman Spectroscopy, Wide-Angle X-ray Scattering , and Differential Scanning Calorimetry. Macromolecules 9297:6611–6619

    Article  Google Scholar 

  30. Kaur J, Shah J, Kotnala RK, Verma KC (2012) Raman spectra, photoluminescence and ferromagnetism of pure, co and Fe doped SnO2nanoparticles. Ceram Int 38:5563–5570. https://doi.org/10.1016/j.ceramint.2012.03.075

    Article  CAS  Google Scholar 

  31. Pawlyta M, Rouzaud J-N, Duber S (2015) Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information. Carbon N Y 84:479–490. https://doi.org/10.1016/j.carbon.2014.12.030

    Article  CAS  Google Scholar 

  32. Philipp HR, Legrand DG, Cole HS, Liu YS (1987) The optical properties of bisphenol-a polycarbonate. Polym Eng Sci 27:1148–1155. https://doi.org/10.1002/pen.760271507

    Article  CAS  Google Scholar 

  33. Mark JE (2009) Polymer data hand book

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Eskandari or Pablo Taboada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, M., Azizi, J., Malekfar, R. et al. Mechanical study and molecular dynamics simulation on polycarbonate nanocomposite with carbon black and SnO2. J Polym Res 27, 268 (2020). https://doi.org/10.1007/s10965-020-02094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02094-5

Keywords

Navigation