Skip to main content
Log in

Combined DFT-experimental investigation and preparation of two new Thiadiazole-based Bithiophene or Fluorene containing polymers via Suzuki-Miyaura reactions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we firstly present an efficient synthetic pathway to a new Schiff base derivative (Sb) containing a thiadiazole backbone. In concomitant step, two newly designed polymers of this Schiff base derivative bearing bithiophene or fluorene subunits, abbreviated as poly[Sb-BTh] and poly[Sb-Flu], respectively, were prepared by surveying the Suzuki-Miyaura polycondensation reaction conditions. Following the completion of the synthetic steps, the appropriate structural analyses of the synthesized Schiff base and its corresponding bithiophene or fluorene bearing polymers were performed by using FT-IR, 1H-NMR, 13C-NMR, GPC, DSC, and TGA analytical techniques. Furthermore, a detailed DFT-based computational study was also performed to enlighten the conformity between the experimental and theoretical findings by investigating the fundamental physical properties of the monomer and its oligomer units (n = 1–4). The experimental studies proved that the thermal stability of the poly[Sb-BTh] was found to be better than poly[Sb-Flu], and the computational studies were found to be consistent with the experimental outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev 311:1–23. https://doi.org/10.1016/j.ccr.2015.11.010

    Article  CAS  Google Scholar 

  2. Ye Y-X, Liu W-L, Ye B-H (2017) A highly efficient and recyclable Pd(II) metallogel catalyst: a new scaffold for Suzuki-Miyaura coupling. Catal Commun 89:100–105. https://doi.org/10.1016/j.catcom.2016.10.017

    Article  CAS  Google Scholar 

  3. Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang YF, Houk KN, Newman SG (2017) Palladium-catalyzed Suzuki–Miyaura coupling of aryl esters. J Am Chem Soc 139:1311–1318. https://doi.org/10.1021/jacs.6b12329

    Article  CAS  PubMed  Google Scholar 

  4. Marrocchi A, Facchetti A, Lanari D, Petrucci C, Vaccaro L (2016) Current methodologies for a sustainable approach to π-conjugated organic semiconductors. Energy Environ Sci 9:763–786. https://doi.org/10.1039/C5EE03727A

    Article  CAS  Google Scholar 

  5. Durak LJ, Payne JT, Lewis JC (2016) Late-stage diversification of biologically active molecules via Chemoenzymatic C–H functionalization. ACS Catal 6:1451–1454. https://doi.org/10.1021/acscatal.5b02558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lennox AJJ, Lloyd-Jones GC (2014) Selection of boron reagents for Suzuki–Miyaura coupling. Chem Soc Rev 43:412–443. https://doi.org/10.1039/C3CS60197H

    Article  CAS  PubMed  Google Scholar 

  7. Isley NA, Gallou F, Lipshutz BH (2013) Transforming Suzuki–Miyaura cross-couplings of MIDA Boronates into a green technology: no organic solvents. J Am Chem Soc 135:17707–17710. https://doi.org/10.1021/ja409663q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham KR, Cabanetos C, Jahnke JP, Idso MN, el Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD (2014) Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic Photovoltaics. J Am Chem Soc 136:9608–9618. https://doi.org/10.1021/ja502985g

    Article  CAS  PubMed  Google Scholar 

  9. Rivnay J, Owens RM, Malliaras GG (2014) The rise of organic bioelectronics. Chem Mater 26:679–685. https://doi.org/10.1021/cm4022003

    Article  CAS  Google Scholar 

  10. Lakhwani G, Rao A, Friend RH (2014) Bimolecular recombination in organic Photovoltaics. Annu Rev Phys Chem 65:557–581. https://doi.org/10.1146/annurev-physchem-040513-103615

    Article  CAS  PubMed  Google Scholar 

  11. Sun M, Wang W, Liang L, Yan SH, Zhou ML, Ling QD (2015) Substituent effects on direct arylation polycondensation and optical properties of alternating fluorene-thiophene copolymers. Chin J Polym Sci 33:783–791. https://doi.org/10.1007/s10118-015-1555-9

    Article  CAS  Google Scholar 

  12. Samsonidze G, Ribeiro FJ, Cohen ML, Louie SG (2014) Quasiparticle and optical properties of polythiophene-derived polymers. Phys Rev B 90:035123. https://doi.org/10.1103/PhysRevB.90.035123

    Article  CAS  Google Scholar 

  13. Mehmood U, Al-Ahmed A, Hussein IA (2016) Review on recent advances in polythiophene based photovoltaic devices. Renew Sust Energ Rev 57:550–561. https://doi.org/10.1016/j.rser.2015.12.177

    Article  CAS  Google Scholar 

  14. Abdulrazzaq M, Ozkut MI, Gokce G, Ertan S, Tutuncu E, Cihaner A (2017) A low band gap polymer based on Selenophene and Benzobis (thiadiazole). Electrochim Acta 249:189–197. https://doi.org/10.1016/j.electacta.2017.08.007

    Article  CAS  Google Scholar 

  15. Bathula C, Kalode P, Patil S, Lee SK, Belavagi NS, Khazi IA, Kang Y (2016) Synthesis and electronic properties of thiadiazole[3,4-c] pyridine copolymers for solar cell application. Tetrahedron Lett 57:998–1002. https://doi.org/10.1016/j.tetlet.2016.01.063

    Article  CAS  Google Scholar 

  16. Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J (2016) Highly efficient fullerene-free polymer solar cells fabricated with Polythiophene derivative. Adv Mater 28:9416–9422. https://doi.org/10.1002/adma.201601803

    Article  CAS  PubMed  Google Scholar 

  17. Phung Hai TA, Sugimoto R (2016) Conjugated carbazole-thiophene copolymer: synthesis, characterization and applications. Synth Met 220:59–71. https://doi.org/10.1016/j.synthmet.2016.05.026

    Article  CAS  Google Scholar 

  18. Hu Y, Hu D, Ming S, Duan X, Zhao F, Hou J, Xu J, Jiang F (2016) Synthesis of polyether-bridged bithiophenes and their electrochemical polymerization to electrochromic property. Electrochim Acta 189:64–73. https://doi.org/10.1016/j.electacta.2015.12.091

    Article  CAS  Google Scholar 

  19. Sui A, Shi X, Tian H, Geng Y, Wang F (2014) Suzuki–Miyaura catalyst-transfer polycondensation with Pd(IPr)(OAc) 2 as the catalyst for the controlled synthesis of polyfluorenes and polythiophenes. Polym Chem 5:7072–7080. https://doi.org/10.1039/C4PY00917G

    Article  CAS  Google Scholar 

  20. Naga N, Miyanaga T, Furukawa H (2014) Synthesis and optical properties of organic-inorganic hybrid semi-interpenetrating polymer network gels containing polyfluorenes. J Polym Sci Part A Polym Chem 52:973–984. https://doi.org/10.1002/pola.27077

    Article  CAS  Google Scholar 

  21. Xiang C, Wan H, Zhu M, Chen Y, Peng J, Zhou G (2017) Dipicolylamine functionalized Polyfluorene based gel with lower critical solution temperature: preparation, characterization, and application. ACS Appl Mater Interfaces 9:8872–8879. https://doi.org/10.1021/acsami.7b00600

    Article  CAS  PubMed  Google Scholar 

  22. Muthuraj B, Mukherjee S, Patra CR, Iyer PK (2016) Amplified fluorescence from Polyfluorene nanoparticles with dual state emission and aggregation caused red shifted emission for live cell imaging and Cancer Theranostics. ACS Appl Mater Interfaces 8:32220–32229. https://doi.org/10.1021/acsami.6b11373

    Article  CAS  PubMed  Google Scholar 

  23. Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43:6570–6597. https://doi.org/10.1039/C4CS00014E

    Article  CAS  PubMed  Google Scholar 

  24. Wu T-Y, Li J-L (2016) Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1,2,5-thiadiazole-based poly(2,5-dithienylpyrrole) derivatives. RSC Adv 6:15988–15998. https://doi.org/10.1039/C5RA27902J

    Article  CAS  Google Scholar 

  25. Tong J, An L, Li J, Zhang P, Guo P, Yang C, Su Q, Wang X, Xia Y (2017) Large branched alkylthienyl bridged naphtho[1,2- c :5,6- c ′]bis[1,2,5]thiadiazole-containing low bandgap copolymers: synthesis and photovoltaic application. J Macromol Sci Part A 54:176–185. https://doi.org/10.1080/10601325.2017.1265404

    Article  CAS  Google Scholar 

  26. Choi H, Ko S-J, Kim T, Morin PO, Walker B, Lee BH, Leclerc M, Kim JY, Heeger AJ (2015) Small-Bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor. Adv Mater 27:3318–3324. https://doi.org/10.1002/adma.201501132

    Article  CAS  PubMed  Google Scholar 

  27. Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, Peng J, Ma Y, Cao Y (2014) Low band-gap conjugated polymers with strong Interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv Mater 26:2586–2591. https://doi.org/10.1002/adma.201305092

    Article  CAS  PubMed  Google Scholar 

  28. Wei S, Xia J, Dell EJ, Jiang Y, Song R, Lee H, Rodenbough P, Briseno AL, Campos LM (2014) Bandgap engineering through controlled oxidation of Polythiophenes. Angew Chemie Int Ed 53:1832–1836. https://doi.org/10.1002/anie.201309398

    Article  CAS  Google Scholar 

  29. Chen L, Wang K, Mahmoud SM, Li Y, Huang H, Huang W, Xu J, Dun C, Carroll D, Pietrangelo A (2015) Effects of replacing thiophene with 5,5-dimethylcyclopentadiene in alternating poly(phenylene), poly(3-hexylthiophene), and poly(fluorene) copolymer derivatives. Polym Chem 6:7533–7542. https://doi.org/10.1039/C5PY01247C

    Article  CAS  Google Scholar 

  30. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of Organoboron compounds. Chem Rev 95:2457–2483. https://doi.org/10.1021/cr00039a007

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, revision B.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT

  32. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission. KS

    Google Scholar 

  33. Poverenov E, Sheynin Y, Zamoshchik N, Patra A, Leitus G, Perepichka IF, Bendikov M (2012) Flat conjugated polymers combining a relatively low HOMO energy level and band gap: polyselenophenes versus polythiophenes. J Mater Chem 22:14645. https://doi.org/10.1039/c2jm31035j

    Article  CAS  Google Scholar 

  34. Planells M, Nikolka M, Hurhangee M, Tuladhar PS, White AJP, Durrant JR, Sirringhaus H, McCulloch I (2014) The effect of thiadiazole out-backbone displacement in indacenodithiophene semiconductor polymers. J Mater Chem C 2:8789–8795. https://doi.org/10.1039/C4TC01500B

    Article  CAS  Google Scholar 

  35. Mart H, Vilayetoglu AR (2004) Synthesis, characterization and thermal degradation of some copper (II), zinc (II) and cobalt (II) complexes with oligosalicylaldehyde. Polym Degrad Stab 83:255–258. https://doi.org/10.1016/S0141-3910(03)00270-2

    Article  CAS  Google Scholar 

  36. Kaya İ, Koyuncu S (2003) The synthesis and characterization of oligo-N-4-aminopyridine, oligo-2-[(pyridine-4-yl-imino) methyl] phenol and its some oligomer–metal complexes. Polymer (Guildf) 44:7299–7309. https://doi.org/10.1016/j.polymer.2003.09.011

    Article  CAS  Google Scholar 

  37. Cianga I, Ivanoiu M (2006) Synthesis of poly(Schiff-base)s by organometallic processes. Eur Polym J 42:1922–1933. https://doi.org/10.1016/j.eurpolymj.2006.03.001

    Article  CAS  Google Scholar 

  38. Andersson MR, Thomas O, Mammo W, Svensson M, Theander M, Inganäs O (1999) Substituted polythiophenes designed for optoelectronic devices and conductors. J Mater Chem 9:1933–1940. https://doi.org/10.1039/a902859e

    Article  CAS  Google Scholar 

  39. Kaya İ, Gökpınar M, Kamacı M (2017) Reaction conditions, photophysical, electrochemical, conductivity, and thermal properties of polyazomethines. Macromol Res 25:739–748. https://doi.org/10.1007/s13233-017-5072-2

    Article  CAS  Google Scholar 

  40. Rasmussen S (2013) Low-Bandgap polymers. In: Encycl. Polym. Nanomater. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–13

  41. Kurtay G, Soganci T, Ak M, Gullu M (2016) Synthesis and computational Bandgap engineering of new 3,4-Alkylenedioxypyrrole (ADOP) derivatives and investigation of their Electrochromic properties. J Electrochem Soc 163:H896–H905. https://doi.org/10.1149/2.0131610jes

    Article  CAS  Google Scholar 

  42. Roncali J (1997) Synthetic principles for Bandgap control in linear π-conjugated systems. Chem Rev 97:173–206. https://doi.org/10.1021/cr950257t

    Article  CAS  PubMed  Google Scholar 

  43. Roncali J (2007) Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol Rapid Commun 28:1761–1775. https://doi.org/10.1002/marc.200700345

    Article  CAS  Google Scholar 

  44. Beaujuge PM, Amb CM, Reynolds JR (2010) Spectral engineering in π-conjugated polymers with Intramolecular donor−acceptor interactions. Acc Chem Res 43:1396–1407. https://doi.org/10.1021/ar100043u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from Muş Alparslan University Research Foundation (Project No: MŞÜ-14-EMF-G01) is greatly acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esin Kaya or Adem Korkmaz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, E., Kurtay, G. & Korkmaz, A. Combined DFT-experimental investigation and preparation of two new Thiadiazole-based Bithiophene or Fluorene containing polymers via Suzuki-Miyaura reactions. J Polym Res 27, 131 (2020). https://doi.org/10.1007/s10965-020-02086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02086-5

Keywords

Navigation