Skip to main content
Log in

Influence of tetraglyme towards magnesium salt dissociation in solid polymer electrolyte for electric double layer capacitor

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Most of commercialized electrical double layer capacitors (EDLCs) with liquid electrolyte are bulky, non-flexible and unsafe which require solid polymer electrolyte (SPE) as the replacement. Herein, SPE containing tetraglyme as the ionic conductivity booster was prepared in which polyvinyl alcohol (PVA), magnesium trifluoromethane sulfonate (Mg (Tf)2) and tetraglyme (TEDGME) have been utilized as the host polymer, salt and additive, respectively. After the addition of TEDGME, the SPE exhibited a significant boost in ionic conductivity from 1.43 × 10−9 to 3.10 × 10−5 S cm−1. This is attributed to the presence of multiple ether oxygen atom functional group from TEDGME that provides more charge carriers. Fourier transform infrared spectroscopy authenticates the formation of complex within the SPE systems which indicates the formation of good interaction between the host polymer and the salts. X-ray diffraction analysis demonstrates the reduction in crystallinity of the SPE after the addition of TEDGME which is beneficial for the ion diffusion. The maximum specific capacitance achieved by the EDLC employing the SPE incorporated with TEDGME is 6.34 F/g at 0.04 A/g, with the rate capability of 74.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206. https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  2. Kotatha D, Torii Y, Shinomiya K, Ogino M, Uchida S, Ishikawa M, Furuike T, Tamura H (2019) Preparation of thin-film electrolyte from chitosan-containing ionic liquid for application to electric double-layer capacitors. Int J Biol Macromol 124:1274–1280. https://doi.org/10.1016/j.ijbiomac.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  3. Hashim MA, Yatim NM, Mahmud NAC et al (2018) Hybrid solid polymer electrolyte from diapers as separator for electrochemical double layer capacitor (EDLC). In: AIP Conference Proceedings, p 020001

  4. Sun L, Wang X, Wang Y, Zhang Q (2017) Roles of carbon nanotubes in novel energy storage devices. Carbon N Y 122:462–474. https://doi.org/10.1016/j.carbon.2017.07.006

    Article  CAS  Google Scholar 

  5. Li Q, Chen J, Fan L et al (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1:18–42. https://doi.org/10.1016/j.gee.2016.04.006

    Article  Google Scholar 

  6. Farhana NK, Omar FS, Shanti R, Mahipal YK, Ramesh S, Ramesh K (2019) Iota-carrageenan-based polymer electrolyte: impact on ionic conductivity with incorporation of AmNTFSI ionic liquid for supercapacitor. Ionics (Kiel) 25:3321–3329. https://doi.org/10.1007/s11581-019-02865-1

    Article  CAS  Google Scholar 

  7. Muchakayala R, Song S, Wang J et al (2018) Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films. J Ind Eng Chem 59:79–89. https://doi.org/10.1016/j.jiec.2017.10.009

    Article  CAS  Google Scholar 

  8. Ortega PFR, Trigueiro JPC, Silva GG, Lavall RL (2016) Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochim Acta 188:809–817. https://doi.org/10.1016/j.electacta.2015.12.056

    Article  CAS  Google Scholar 

  9. Chaudoy V, Tran Van F, Deschamps M, Ghamouss F (2017) Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. J Power Sources 342:872–878. https://doi.org/10.1016/j.jpowsour.2016.12.097

    Article  CAS  Google Scholar 

  10. Yu H, Wu J, Fan L et al (2012) A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. J Power Sources 198:402–407. https://doi.org/10.1016/j.jpowsour.2011.09.110

    Article  CAS  Google Scholar 

  11. Ji Y, Liang N, Xu J et al (2018) Solid polymer electrolyte membranes based on quaternized polysulfone and solvent-free fluid as separators for electrical double-layer capacitors. Electrochim Acta 283:97–103. https://doi.org/10.1016/j.electacta.2018.06.156

    Article  CAS  Google Scholar 

  12. Syahidah SN, Majid SR (2015) Ionic liquid-based polymer gel electrolytes for symmetrical solid-state electrical double layer capacitor operated at different operating voltages. Electrochim Acta 175:184–192. https://doi.org/10.1016/j.electacta.2015.02.215

    Article  CAS  Google Scholar 

  13. Lee DK, Allcock HR (2010) The effects of cations and anions on the ionic conductivity of poly [bis(2-(2-methoxyethoxy)ethoxy)phosphazene] doped with lithium and magnesium salts of trifluoromethanesulfonate and bis (trifluoromethanesulfonyl)imidate. Solid State Ionics 181:1721–1726. https://doi.org/10.1016/j.ssi.2010.09.051

    Article  CAS  Google Scholar 

  14. Aguilera L, Xiong S, Scheers J, Matic A (2015) A structural study of LiTFSI-tetraglyme mixtures: from diluted solutions to solvated ionic liquids. J Mol Liq 210:238–242. https://doi.org/10.1016/j.molliq.2015.04.053

    Article  CAS  Google Scholar 

  15. Bidin MZ, Hon Ming N, Omar FS et al (2018) Solid terpolymer electrolyte based on poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) incorporated with lithium salt and tetraglyme for EDLCs. J Appl Polym Sci 135:1–7. https://doi.org/10.1002/app.45902

    Article  CAS  Google Scholar 

  16. Wang H, Matsui M, Takeda Y, Yamamoto O, Im D, Lee D, Imanishi N (2013) Interface properties between lithium metal and a composite polymer electrolyte of PEO18LI(CF3SO2)2N-tetraethylene glycol dimethyl ether. Membranes (Basel) 3:198–310. https://doi.org/10.3390/membranes3040298

    Article  CAS  Google Scholar 

  17. Pandey GP, Kumar Y, Hashmi SA (2010) Ionic liquid incorporated polymer electrolytes for supercapacitor application. Indian J Chem 49:743–751

    Google Scholar 

  18. Polu AR, Kumar R (2013) Ionic conductivity and discharge characteristic studies of PVA-mg (CH3COO)2 solid polymer electrolytes. Int J Polym Mater Polym Biomater 62:76–80. https://doi.org/10.1080/00914037.2012.664211

    Article  CAS  Google Scholar 

  19. Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokko K, Watanabe M (2015) Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys 17:8248–8257. https://doi.org/10.1039/c4cp05943c

    Article  CAS  PubMed  Google Scholar 

  20. Fattah NFA, Ng HM, Mahipal YK et al (2016) An approach to solid-state electrical double layer capacitors fabricated with graphene oxide-doped, ionic liquid-based solid copolymer electrolytes. Materials (Basel) 9:450. https://doi.org/10.3390/ma9060450

    Article  CAS  PubMed Central  Google Scholar 

  21. Fukutsuka T, Asaka K, Inoo A et al (2014) New magnesium-ion conductive electrolyte solution based on triglyme for reversible magnesium metal deposition and dissolution at ambient temperature. Chem Lett 43:1788–1790. https://doi.org/10.1246/cl.140704

    Article  CAS  Google Scholar 

  22. Aziz SB, Abidin ZHZ, Arof AK (2010) Effect of silver nanoparticles on the DC conductivity in chitosansilver triflate polymer electrolyte. Phys B Condens Matter 405:4429–4433. https://doi.org/10.1016/j.physb.2010.08.008

    Article  CAS  Google Scholar 

  23. Liew CW, Ramesh S, Arof AK (2016) Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes. Energy 109:546–556. https://doi.org/10.1016/j.energy.2016.05.019

    Article  CAS  Google Scholar 

  24. Deshpande A, Kariyawasam L, Dutta P, Banerjee S (2013) Enhancement of lithium ion mobility in ionic liquid electrolytes in presence of additives. J Phys Chem C 117:25343–25351. https://doi.org/10.1021/jp409498w

    Article  CAS  Google Scholar 

  25. Liew CW, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrog Energy 39:2953–2963. https://doi.org/10.1016/j.ijhydene.2013.06.061

    Article  CAS  Google Scholar 

  26. Jeong SK, Jo YK, Jo NJ (2006) Decoupled ion conduction mechanism of poly (vinyl alcohol) based Mg-conducting solid polymer electrolyte. Electrochim Acta 52:1549–1555. https://doi.org/10.1016/j.electacta.2006.02.061

    Article  CAS  Google Scholar 

  27. Wang J, Song S, Muchakayala R, Hu X, Liu R (2017) Structural, electrical, and electrochemical properties of PVA-based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics (Kiel) 23:1759–1769. https://doi.org/10.1007/s11581-017-1988-y

    Article  CAS  Google Scholar 

  28. Mahakul PC, Sa K, Das B, Mahanandia P (2017) Structural investigation of the enhanced electrical, optical and electrochemical properties of MWCNT incorporated poly [3-hexylthiophene-2,5-diyl] composites. Mater Chem Phys 199:477–484. https://doi.org/10.1016/j.matchemphys.2017.07.030

    Article  CAS  Google Scholar 

  29. Yang JM, Wang SA (2015) Preparation of graphene-based poly (vinyl alcohol)/chitosan nanocomposites membrane for alkaline solid electrolytes membrane. J Membrane Sci 477:49–57. https://doi.org/10.1016/j.memsci.2014.12.028

    Article  CAS  Google Scholar 

  30. Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K (2016) Novel poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based gel polymer electrolyte containing fumed silica (SiO2) nanofiller for high performance dye-sensitized solar cell. Electrochim Acta 220:573–580. https://doi.org/10.1016/j.electacta.2016.10.135

    Article  CAS  Google Scholar 

  31. Lim CS, Teoh KH, Liew CW, Ramesh S (2014) Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)-lithium perchlorate based polymer electrolyte incorporated with TiO2. Mater Chem Phys 143:661–667. https://doi.org/10.1016/j.matchemphys.2013.09.051

    Article  CAS  Google Scholar 

  32. Polu AR, Kumar R (2013) Preparation and characterization of pva based solid polymer electrolytes for electrochemical cell applications. Chinese J Polym Sci (English Ed) 31:641–648. https://doi.org/10.1007/s10118-013-1246-3

    Article  CAS  Google Scholar 

  33. Abdullah OG, Aziz SB, Rasheed MA (2016) Structural and optical characterization of PVA:KMnO4based solid polymer electrolyte. Results Phys 6:1103–1108. https://doi.org/10.1016/j.rinp.2016.11.050

    Article  Google Scholar 

  34. Suthanthiraraj SA, Kumar R, Paul BJ (2009) FT-IR spectroscopic investigation of ionic interactions in PPG 4000: AgCF3SO3 polymer electrolyte. Spectrochim Acta A Mol Biomol Spectrosc 71:2012–2015. https://doi.org/10.1016/j.saa.2008.07.040

    Article  CAS  PubMed  Google Scholar 

  35. Terada S, Mandai T, Suzuki S et al (2016) Thermal and electrochemical stability of tetraglyme-magnesium bis (trifluoromethanesulfonyl) amide complex: electric field effect of divalent cation on solvate stability. J Phys Chem C 120:1353–1365. https://doi.org/10.1021/acs.jpcc.5b09779

    Article  CAS  Google Scholar 

  36. Francis KA, Liew CW, Ramesh S, Ramesh K, Ramesh S (2016) Ionic liquid enhanced magnesium-based polymer electrolytes for electrical double-layer capacitors. Ionics (Kiel) 22:919–925. https://doi.org/10.1007/s11581-015-1619-4

    Article  CAS  Google Scholar 

  37. Lee JSM, Briggs ME, Hu CC, Cooper AI (2018) Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46:277–289. https://doi.org/10.1016/j.nanoen.2018.01.042

    Article  CAS  Google Scholar 

  38. Sharma A, Zhang Y, Gohndrone T et al (2017) How mixing tetraglyme with the ionic liquid 1-n-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide changes volumetric and transport properties: an experimental and computational study. Chem Eng Sci 159:43–57. https://doi.org/10.1016/j.ces.2016.05.006

    Article  CAS  Google Scholar 

  39. Nasibi M, Golozar MA, Rashed G (2012) Nano zirconium oxide/carbon black as a new electrode material for electrochemical double layer capacitors. J Power Sources 206:108–110. https://doi.org/10.1016/j.jpowsour.2012.01.052

    Article  CAS  Google Scholar 

  40. Omar FS, Numan A, Duraisamy N et al (2017) A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J Alloys Compd 716:96–105. https://doi.org/10.1016/j.jallcom.2017.05.039

    Article  CAS  Google Scholar 

  41. Abouimrane A, Belharouak I, Abu-Lebdeh YA (2015) An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte. Front Energy Res 3:1–6. https://doi.org/10.3389/fenrg.2015.00034

    Article  Google Scholar 

  42. Vinotha K, Senthilkumar V, Muruganand S, Sriram K (2018) Fabrication of electrospun PVA-KCl nanofibers as electric double layer capacitor and electrochemical analysis for application as solid polymer electrolyte. Int J Pure Appl Math 119:1145–1153

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by Fundamental Research Grant Scheme (FRGS) from Ministry of Education, Malaysia (FP062-2018A). The authors would like to thank Collaborative Research in Engineering, Science & Technology Center (CREST) for their continuous support in this research (PV027-2018). A special thank you to ECLIMO SDN BHD as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, K.H., Farhana, N.K., Omar, F.S. et al. Influence of tetraglyme towards magnesium salt dissociation in solid polymer electrolyte for electric double layer capacitor. J Polym Res 27, 116 (2020). https://doi.org/10.1007/s10965-020-02070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02070-z

Keywords

Navigation