Skip to main content
Log in

Formation of gradient polymer lenses by non-stationary luminous flux

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The diffusion processes in a layer of a photopolymerizable composition stimulated by non-stationary optical radiation causing the relocation of the neutral component concentration and formation of smooth distributions of the refractive index were investigated. By the method of computer simulation, it was shown that with the photopolymerization of such a multi-component medium, moving the illumination boundary along the polymerized layer makes it possible to create gradient polymer lenses with a parabolic and Gaussian profile of the refractive index. The experimental results on the optical formation of flat elements of gradient polymeric optics from the industrial oligomer OCM-2 with butanol as a neutral component are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Born M, Wolf E (1999) Principles of optics. Cambridge University, Cambridge

    Book  Google Scholar 

  2. Ji S, Yin K, Mackey M, Brister A, Ponting M, Baer E (2013) Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses. Opt Eng 52(11):112105

    Article  Google Scholar 

  3. Dymshits OS, Zhilin AA, Shashkin AV (2008) Method of making glassceramic lens with refraction index gradient. Patent RU 2385845

  4. Liu J-H, Wang H-Y, Ho C-H (2003) Fabrication and characterization of gradient refractive index plastic rods containing inorganic nanoparticles. J Polym Res 10:13–20

    Article  CAS  Google Scholar 

  5. Yu M, Tsai M, Schmidt GR, Anthamatten M (2015) Gradient-index materials based on thiol − ene networks. ACS Appl Mater Interfaces 7:8601–8605

    Article  Google Scholar 

  6. Veniaminov AV, Mahilny VV (2013) Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications. Opt Spectrosc 115(6):906–930

    Article  CAS  Google Scholar 

  7. Tomita Y, Hata E, Momose K, Takayama S, Liu X, Chikama K, Klepp J, Pruner C, Fally M (2016) Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J Modern Optics 63(S3):S1–S31

    Article  CAS  Google Scholar 

  8. Lonin AL, Mensov SN, Polushtaytsev YV (2004) Causes of the filamentary instability of optical-beam self-channeling in Photopolymerizable compositions. JETP Lett 79(11):515–518

    Article  CAS  Google Scholar 

  9. Baten’kin MA, Mensov SN, Romanov AV (2008) The use of low-viscosity neutral components for increasing the diffraction efficiency of photopolymer holograms. Opt Spectrosc 104(1):135–139

    Article  Google Scholar 

  10. Mensov SN, Morozova MA, Polushtaytsev YV (2016) Formation of periodic phase structures in a Photopolymerizable layer by nonstationary light beams. Opt Spectrosc 121(3):438–444

    Article  CAS  Google Scholar 

  11. Baten’kin MA, Mensov SN, Morozova MA, Polushtaytsev YV (2015) Neutral component localization in the volume of photopolymerizable medium by the counter moving boundaries of initiating radiation action. J Polym Res 22:247

    Article  Google Scholar 

  12. Mensov SN, Morozova MA, Polushtaytsev YV (2018) Optical formation and transport of a local region with an increased content of a neutral component in a photopolymerizable composite layer. JETP Lett 108(8):553–556

    Article  CAS  Google Scholar 

  13. Egorov GS, Stepanov NS (1982) Simulation of a gravitational lens in a lecture demonstration. Sov Phys Usp 25:705–707

    Article  Google Scholar 

  14. Mayer VV (2007) Light in optically inhomogeneous medium. Physmathlit, Moscow [in russian]

    Google Scholar 

  15. Ya C, Gan Z, Jia B, Evans RA, Gu M (2011) High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt Express 19(20):19486–19494

    Article  Google Scholar 

  16. Formana DL, Heuvelmanb GL, McLeoda RR (2012) Materials development for photoinhibited superresolution (PINSR) lithography. Proc SPIE 8249:824904

    Article  Google Scholar 

  17. Kazak NS, Krening M, Mashchenko AG, Ropot PI (2007) A controlled conical Lens for the formation of Bessel light beams. Opt Spectrosc 130(5):826–830

    Google Scholar 

  18. Chesnokov SA, Cherkasov VK, Abakumov GA, Mamysheva ON, Chechet YV, Nevodchikov VI (2001) Influence of o-benzoquinone nature on initiation of radical polymerization by the o-benzoquinone – tert-amine system. Russ Chem Bull 50(12):2366–2371

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by by the Russian Science Foundation (proj. no. 15-13-00137-P).

Funding

Russian Science Foundation 15-13-00137-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Victorovich Polushtaytsev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polushtaytsev, Y.V., Mensov, S.N. Formation of gradient polymer lenses by non-stationary luminous flux. J Polym Res 26, 273 (2019). https://doi.org/10.1007/s10965-019-1968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1968-1

Keywords

Navigation