Skip to main content
Log in

A novel bead synthesis of the Chiron-sodium dodecyl sulfate hydrogel and its kinetics-thermodynamics study of superb adsorption of alizarin red S from aqueous solution

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We present a novel strategy for one step synthesis of iron (III) hydroxide doped chitosan (“Chiron”) without using acidic solvent via sodium dodecyl sulfate (SDS) as surfactant gelation, namely, Chiron-SDS hydrogel bead. The Chiron-SDS is developed as a potentially attractive adsorbent for an investigation of the noxious anionic dye from aqueous solution. The bead formation was obtained from 20 μL of the Chiron solution, and their uniform bead diameter was observed about 179 ± 0.13 μm, of which containing 86.7% moisture or 6 × 10−5 g DW per bead. Alizarin red S (AR) was chosen as pollutant model and was monitored spectrophometrically at 425 nm. The bead size after AR adsorption was slightly larger (185 ± 0.10 μm) than that of its original one. Fourier transform infrared analysis indicated that the Fe (OH)3 were chelated with chitosan structure in the Chiron-SDS beads. The equilibrium data fit to Langmuir as the best representative model (R2 0.99), and their kinetics data are well fitted with the pseudo-second order. It was found that the maximum adsorption capacity (qm) from Langmuir model for AR by Chiron-SDS is 294 mg g−1, which was much higher than those previously reported data. The calculated thermodynamic parameters show that the dye adsorption is spontaneous and endothermic process. The advantage characteristics of ease, low cost, eco-friendly, and superb high adsorption efficiency demonstrate that this output gives a great deal to step forward for a huge scale elimination of toxic dye contaminants from aqueous solution, leading usefulness further for an environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kumar R, Sharma RK, Singh AP (2019). J Polym Res 26:135

    Google Scholar 

  2. Anastasio P, Del Giacco T, Germani R, Spreti N, Tiecco M (2017). RSC Adv 7:361–368

    CAS  Google Scholar 

  3. Vaiano V, Sacco O, Sannino D, Ciambelli P (2015). Appl Catal B 170-171:153–161

    CAS  Google Scholar 

  4. Wang Y, Zhao L, Peng H, Wu J, Liu Z, Guo X (2016). J Chem Eng Data 61:3266–3276

    CAS  Google Scholar 

  5. Zolgharnein J, Asanjrani N, Bagtash M, Azimi G (2014). Spectrochim Acta A 126:291–300

    CAS  Google Scholar 

  6. Roosta M, Ghaedi M, Mohammadi M (2014). Powder Technol 267:134–144

    CAS  Google Scholar 

  7. Sakata-Haga H, Uchishiba M, Shimada H, Tsukada T, Mitani M, Arikawa T, Shoji H, Hatta T (2018). Sci Rep 8:7453

    PubMed  PubMed Central  Google Scholar 

  8. Machado FM, Carmalin SA, Lima EC, Dias SLP, Prola LDT, Saucier C, Jauris IM, Zanella I, Fagan SB (2016). J Phys Chem C 120:18296–18306

    CAS  Google Scholar 

  9. Gholivand MB, Yamini Y, Dayeni M, Seidi S, Tahmasebi E (2015). J Environ Chem Eng 3:529–540

    CAS  Google Scholar 

  10. Bello K, Sarojini BK, Narayana B (2019). J Polym Res 26:62

    Google Scholar 

  11. Zhu X, Jiang X, Cheng S, Wang K, Mao S, Fan LJ (2010). J Polym Res 17:769–777

    CAS  Google Scholar 

  12. Ma W, Zhang Y, Li F, Kou D, Lutkenhaus JL (2019). Polymers 11:165–178

    PubMed Central  Google Scholar 

  13. Wanassi B, Hariz IB, Ghimbeu CM, Vaulot C, Jeguirim M (2017). Energies 10:1321

    Google Scholar 

  14. Sanchez LM, Ollier RP, Alvarez VA (2019). J Polym Res 26:142

    Google Scholar 

  15. Ali I, Peng C, Khan ZM, Naz I, Sultan M (2018). J Chem Technol Biotechnol 93:2817–2832

    CAS  Google Scholar 

  16. Ali I, Peng C, Khan ZM, Sultan M, Naz I (2018). Arabian J Sci Eng 43:6245–6259

    CAS  Google Scholar 

  17. Ali I, Peng C, Lin D, Naz I (2019). Green Process Synth 8:256–271

    CAS  Google Scholar 

  18. Chen S, Guo H, Yang F, Di X (2016). J Polym Res 23:28

    Google Scholar 

  19. Ali I, Peng C, Naz I, Lin D, Saroj DP, Ali M (2019). RSC Adv 9:3625–3646

    CAS  Google Scholar 

  20. Lafi R, Montasser I, Hafiane A (2019). Adsorp Sci Technol 37:160–181

    CAS  Google Scholar 

  21. Fegousse A, El Gaidoumi A, Miyah Y, El Mountassir R, Lahrichi A (2019). J Chem 2019:11

    Google Scholar 

  22. Allen SJ, McKay G, Porter JF (2004). J Colloid Interface Sci 280:322–333

    CAS  PubMed  Google Scholar 

  23. Aksu Z, Tezer S (2005). Process Biochem 40:1347–1361

    CAS  Google Scholar 

  24. Limchoowong N, Sricharoen P, Techawongstien S, Chanthai S (2016). Food Chem 200:223–229

    CAS  PubMed  Google Scholar 

  25. Limchoowong N, Sricharoen P, Techawongstien S, Kongsri S, Chanthai S (2017). J Braz Chem Soc 28:540–546

    CAS  Google Scholar 

  26. Limchoowong N, Sricharoen P, Areerob Y, Nuengmatcha P, Sripakdee T, Techawongstien S, Chanthai S (2017). Food Chem 230:388–397

    CAS  PubMed  Google Scholar 

  27. Limchoowong N, Sricharoen P, Techawongstien S, Chanthai S (2017). Food Chem 230:398–404

    CAS  PubMed  Google Scholar 

  28. Gupta A, Chauhan VS, Sankararamakrishnan N (2009). Water Res 43:3862–3870

    CAS  PubMed  Google Scholar 

  29. Zemskova L, Egorin A, Tokar E, Ivanov V, Bratskaya S (2018). Biomimetics 3:39

    CAS  PubMed Central  Google Scholar 

  30. Fu F, Gao Z, Gao L, Li D (2011). Ind Eng Chem Res 50:9712–9717

    CAS  Google Scholar 

  31. Pirillo S, Ferreira ML, Rueda EH (2009). J Hazard Mater 168:168–178

    CAS  PubMed  Google Scholar 

  32. Zhao J, Lu Z, He X, Zhang X, Li Q, Xia T, Zhang W, Lu C (2017). ACS Sustain Chem Eng 5:7723–7732

    CAS  Google Scholar 

  33. Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A (2005). J Therm Anal Calorim 82:499–505

    CAS  Google Scholar 

  34. Chatterjee S, Chatterjee T, Woo SH (2010). Bioresour Technol 101:3853–3858

    CAS  PubMed  Google Scholar 

  35. Pal P, Pal A (2017). Int J Bio Macromol 104:1548–1555

    CAS  Google Scholar 

  36. Elwakeel KZ (2009). J Hazard Mater 167:383–392

    CAS  PubMed  Google Scholar 

  37. Gedam AH, Dongre RS, Bansiwal AK (2015). Adv Mater Lett 6:59–67

    Google Scholar 

  38. Sai M, Guo R, Chen L, Xu N, Tang Y, Ding D (2015). J Appl Polym Sci 132:41797

    Google Scholar 

  39. Wang SY, Gao H (2013). LWT - Food Sci Technol 52:71–79

    CAS  Google Scholar 

  40. Wang HL, Cui JY, Jiang WF (2011). Mater Chem Phys 130:993–999

    CAS  Google Scholar 

  41. Wang QZ, Chen XG, Liu N, Wang SX, Liu CS, Meng XH, Liu CG (2006). Carbohydr Polym 65:194–201

    CAS  Google Scholar 

  42. Ghaedi M, Najibi A, Hossainian H, Shokrollahi A, Soylak M (2012). Toxicol Environ Chem 94:40–48

    CAS  Google Scholar 

  43. Fan L, Zhang Y, Li X, Luo C, Lu F, Qiu H (2012). Colloids Surf B 91:250–257

    CAS  Google Scholar 

  44. Fayazi M, Ghanei-Motlagh M, Taher MA (2015). Mater Sci Semicond Process 40:35–43

    CAS  Google Scholar 

  45. Albadarin AB, Mangwandi C (2015). J Environ Manag 164:86–93

  46. Rehman R, Mahmud T (2013). Asian J Chem 25:5351–5356

  47. Cheng S, Zhang L, Xia H, Peng J, Shu J, Li C, Jiang X, Zhang Q (2017). RSC Adv 7:27331–27341

  48. Cho DW, Jeon BH, Chon CM, Schwartz FW, Jeong Y, Song H (2015). J Ind Eng Chem 28:60–66

    CAS  Google Scholar 

  49. Lu X, Shao Y, Gao N, Ding L (2015). J Chem Eng Data 60:1259–1269

    CAS  Google Scholar 

  50. Ghorai S, Sarkar A, Raoufi M, Panda AB, Schönherr H, Pal S (2014). ACS Appl Mater Interfaces 6:4766–4777

    CAS  PubMed  Google Scholar 

  51. Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, Xu H, Li X (2014). J Hazard Mater 270:27–34

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCHCIC) and the Post-Doctoral Program from Research Affairs and Graduate School, Khon Kaen University (60162) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nunticha Limchoowong or Saksit Chanthai.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limchoowong, N., Sricharoen, P. & Chanthai, S. A novel bead synthesis of the Chiron-sodium dodecyl sulfate hydrogel and its kinetics-thermodynamics study of superb adsorption of alizarin red S from aqueous solution. J Polym Res 26, 265 (2019). https://doi.org/10.1007/s10965-019-1944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1944-9

Keywords

Navigation