Skip to main content
Log in

Non-isothermal crystallization kinetics of hybrid carbon nanotube - silica/ polyvinyl alcohol Nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, a new nanocomposite based on polyvinyl alcohol (PVA) / hybrid carbon nanotube (CNT) - silica (SiO2) with different amounts (1 and 5 wt%) of hybrid nanostructures are successfully prepared by solution-casting method. The crystallization kinetics of PVA and its nanocomposites under non-isothermal conditions are evaluated by differential scanning calorimetry (DSC). Jeziorny, Ozawa and Mo models are used to determine the PVA and PVA/CNT-SiO2 crystallization kinetics parameters. It was found that the Ozawa method is not suitable for the description of the non-isothermal crystallization behavior of PVA and its nanocomposites, while the Jeziorny and Mo models fitted the experimental data very well. Furthermore, Jeziorny analysis indicated that the crystallization process of PVA and PVA/CNT-SiO2 nanocomposites involve two main stages, the primary and secondary crystallization process. Additionally, the activation energy of non-isothermal crystallization is also estimated by using Friedman method, Kissinger method and isoconversional method modified by Vyazovkin, respectively. The latter method is more appropriate to calculate the non-isothermal crystallization activation energy of both PVA and PVA/CNT-SiO2 nanocomposites. The Hoffman-Lauritzen parameters (U* and Kg) were also determined. Based on the findings of Zc values in Jeziorny model, F(T) values in Mo model, crystallization activation energy and the Hoffman-Lauritzen parameters, it was concluded that hybrid carbon nanotube - silica nanostructures promoted PVA non-isothermal crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang J, Jia H, Tang Y, Xiong X, Ding L (2017) Thermal stability and non-isothermal crystallization kinetics of metallocene poly (ethylene-butene-hexene) /high fluid polypropylene copolymer blends. Therm Acta 647:55–61

    CAS  Google Scholar 

  2. Tarani E, Wurm A, Schick C, Bikiaris DN, Chrissafis K, Vourlias G (2016) Effect of graphene nanoplatelets diameter on non-isothermal crystallization kinetics and melting behavior of high density polyethylene nanocomposites. Therm Acta 643:94–103

    CAS  Google Scholar 

  3. Ben Doudou B, Dargent E, Grenet J (2006) Crystallization and melting behaviour of poly(m-xylene adipamide). J Therm Anal Calorim 85:409–415

    Google Scholar 

  4. Ben Hafsia K, Ponçot M, Chapron D, Royaud I, Dahoun A, Bourson P (2016) A novel approach to study the isothermal and non-isothermal crystallization kinetics of poly(ethylene terephthalate) by Raman spectroscopy. J Polym Res 23:93–107

    Google Scholar 

  5. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012). J Biomed Mater Res B Appl Biomater 100:1451–1458

    PubMed  Google Scholar 

  6. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233

    CAS  PubMed  Google Scholar 

  7. Wan W, Bannerman AD, Yang L, Mak H (2014) Poly(vinyl alcohol) Cryogels for biomedical applications. Polymeric Cryogels 263:283–321

    CAS  Google Scholar 

  8. Gajra B, Pandya SS, Vidyasagar G, Rabari H, Dedania RR, Rao S (2012) Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: a review. Int J Pharm Res 4:20–26

    CAS  Google Scholar 

  9. Marin E, Rojas J, Ciro Y (2014) A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical and biomedical applications. A J Pharm Pharmacol 8:674–684

    Google Scholar 

  10. Wu Z, Wu J, Peng T, Li Y, Lin D, Xing B, Li C, Yang Y, Yang L, Zhang L, Ma R, Wu W, Lv X, Dai J, Han G (2017) Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polym 9:102–121

    Google Scholar 

  11. Musetti A, Paderni K, Fabbri P, Pulvirenti A, Al-Moghazy M, Fava P (2014) Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications. J Food Sci 79:577–582

    Google Scholar 

  12. Hu XL, Hou GM, Zhang MQ, Rong MZ, Ruan WH, Giannelis EP (2012) A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica. J Mater Chem 22:18961–18967

    CAS  Google Scholar 

  13. Zhou WY, Guo B, Liu M, Liao R, Rabie ABM, Jia D (2010) Poly(vinyl alcohol)/Halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. J Biomed Mater Res Part A 93:1574–1587

    Google Scholar 

  14. Ma HL, Zhang Y, Hu QH, He S, Li X, Zhai M, Yu ZZ (2013) Enhanced mechanical properties of poly(vinyl alcohol) nanocomposites with glucose-reduced graphene oxide. Mater Lett 102:15–18

    Google Scholar 

  15. Cheng HKF, Sahoo NG, Tan YP, Pan Y, Bao H, Li L, Chan SH, Zhao J (2012) Poly(vinyl alcohol) Nanocomposites filled with poly(vinyl alcohol)- grafted Graphene oxide. ACS Appl Mater Interfaces 4:2387–2394

    CAS  PubMed  Google Scholar 

  16. He DL, Bozlar M, Genestoux M, Bai JB (2010) Diameter- and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles. Carbon 48:1159–1170

    CAS  Google Scholar 

  17. Qian H, Bismarck A, Greenhalgh ES, Shaffer MSP (2010) Synthesis and characterisation of carbon nanotubes grown on silica fibres by injection CVD. Carbon 48:277–286

    CAS  Google Scholar 

  18. Nguyen XH, Lee YB, Lee CH, Lim DS (2010) Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites. Carbon 48:2910–2916

    CAS  Google Scholar 

  19. Ben Doudou B, Vivet A, Chen J, Laachachi A, Falher T, Poilane C (2014) Hybrid carbon nanotube—silica/ polyvinyl alcohol nanocomposites films: preparation and characterisation. J Polym Res 21:420–429

    Google Scholar 

  20. Huang H, Gu LX, Ozaki Y (2006) Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol). Polym 47:3935–3945

    CAS  Google Scholar 

  21. Abolhasani MM (2015) Effects of dynamic vulcanization on the kinetics of isothermal crystallization in a miscible polymeric blend. N J Chem 39:6130–6140

    CAS  Google Scholar 

  22. Peng Z, Kong LX, Li SD (2005) Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite. Polym 46:1949–1955

    CAS  Google Scholar 

  23. Lee J, Lee KJ, Jang J (2008) Effect of silica nanofillers on isothermal crystallization of poly(vinyl alcohol): in-situ ATR-FTIR study. Polym Test 27:360–367

    CAS  Google Scholar 

  24. Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polym 45:4437–4443

    CAS  Google Scholar 

  25. Ryan KP, Cadek M, Nicolosi V, Walker S, Ruether M, Fonseca A, Nagy JB, Blau WJ, Coleman JN (2006) Multiwalled carbon nanotube nucleated crystallization and reinforcement in poly (vinyl alcohol) composites. Synth Met 156:332–335

    CAS  Google Scholar 

  26. Zhu Y, Du Z, Li H, Zhang C (2017) Structural, thermal and electrical transport behaviour of polymer electrolytes based on PVA and imidazolium based ionic liquid. J Non-Crystalline Solids 473:87–95

    Google Scholar 

  27. Naebe M, Lin T, Tian W, Dai L, Wang X (2007) Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres. Nanotechnology 18:225605–225633

    Google Scholar 

  28. Li C, She M, Kong L (2014) Non-isothermal crystallization kinetics of polyvinyl alcohol-Graphene oxide composites. Appl Mech Mater 446:206–209

    Google Scholar 

  29. Lopez LC, Wilkes GL (1989) Non-isothermal crystallization kinetics of poly(p-phenylene sulphide). Polym 30:882–887

    CAS  Google Scholar 

  30. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19:1142–1144

    CAS  Google Scholar 

  31. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polym 12:150–158

    CAS  Google Scholar 

  32. Evans UR (1945) The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Transact Faraday Soc 41:365–374

    CAS  Google Scholar 

  33. Liu T, Mo Z, Wang S, Zhang H (1996) Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK). Eur Polym J 33:1405–1414

    Google Scholar 

  34. Bin-Dahman OA, Shehzad F, Al-Harthi1 MA (2018) Influence of graphene on the non-isothermal crystallization kinetics of poly(vinyl alcohol)/starch composite. J Polym Res 25:5–15

  35. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(Ary1 ether ether ketone ketone). Polym Eng Sci 37:568–575

    CAS  Google Scholar 

  36. Jain S, Goossens H, Van Duin M, Lemstra P (2005) Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer 46:8805–8818

    CAS  Google Scholar 

  37. Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45:4953–4968

    CAS  Google Scholar 

  38. Wang Y, Shen C, Li H, Li Q, Chen J (2004) Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/clay Nanocomposites. J Appl Polym Sci 91:308–314

    CAS  Google Scholar 

  39. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci Part C-Polym Symp 6:183–195

    Google Scholar 

  40. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    CAS  Google Scholar 

  41. Vyazovkin S, Dranca I (2006) Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys 207:20–25

    CAS  Google Scholar 

  42. Yang C, Qing Y, Xumin Z, Xiaodong X, Hongbing J (2018) The crystallization behaviors and rheological properties of polypropylene/ graphene nanocomposites: the role of surface structure of reduced graphene oxide. Thermo Acta 661:124–136

    Google Scholar 

  43. Jingyi W, Hongbing J, Yingying T, Xiaogang X, Lifeng D (2016) Thermal stability and non-isothermal crystallization kinetics of metallocene poly(ethylene-butene-hexene) /high fluid polypropylene copolymer blends. Thermo Acta 647:55–61

    Google Scholar 

  44. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    CAS  Google Scholar 

  45. Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cooling. Macromol Rapid Commun 23:771–775

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Tunisian Ministry of Higher Education and Scientific Research for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bessem Ben Doudou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebril, S., Ben Doudou, B., Zghal, S. et al. Non-isothermal crystallization kinetics of hybrid carbon nanotube - silica/ polyvinyl alcohol Nanocomposites. J Polym Res 26, 254 (2019). https://doi.org/10.1007/s10965-019-1931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1931-1

Keywords

Navigation