Skip to main content
Log in

Compatibility and thermal decomposition behavior of acrylic block copolymer modified epoxy resin

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of epoxy modified with acrylic amphiphilic block copolymer (BCP) were prepared with different BCP contents. The compatibility between BCP and epoxy matrix was characterized by differential scanning calorimetry (DSC). The nanostructures in the thermosets were investigated by means of atomic force microscopy (AFM). The thermal stability and degradation kinetics of BCP/epoxy blends were investigated that by thermogravimetric analysis (TGA) in N2 atmosphere. The ‘model free method (Vyazovkin’ method) and ‘model fitting’ methods (Coats-Redfern method, Málek method and ABS differential method) were applied to analyze the decomposition of cured neat epoxy and BCP/epoxy blends. The glass transition temperature (Tg) of the BCP/epoxy blends was found almost not affected by the incorporation of BCP. The miscibility of acrylic BCP in the epoxy matrix was verified by comparing the theoretical calculation with experimental results. AFM further confirmed the good miscibility of the blends. The thermal stability of the BCP/epoxy blends remained unchanged and the main decompose reaction was slightly accelerated from the perspective of transition state theory. The relationship between pre-exponential factor and reaction activation energy was established by utilizing the kinetic compensation parameter method. The degradation kinetics of both neat epoxy and BCP/epoxy blend were found abide to the Fn (n > 3/2) reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The experimental data used to support the results of this study is include in the diagram of this paper. Except where it has been specially marked and acknowledge,the paper does not contain any research result that have been published or written by others. Welcome guidance and supervision.

References

  1. Li T, Heinzer M, Francis L, Bates F (2016) Engineering superior toughness in commercially viable block copolymer modified epoxy resin. J Polym Sci Part B Polym Phys 54:189–204

    CAS  Google Scholar 

  2. Auvergne R, Caillol S, David G, Boutevin B, Pascault J (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114:1082–1115

    CAS  PubMed  Google Scholar 

  3. Zhao K, Song X, Liang C, Wang J, Xu S (2015) Morphology and properties of nanostructured epoxy blends toughened with epoxidized carboxyl-terminated liquid rubber. Iran Polym J 24:425–435

    CAS  Google Scholar 

  4. Heng Z, Li R, Chen Y, Zou H, Liang M (2016) Preparation of damping structural integration materials via the formation of nanostructure in triblock copolymer modified epoxy resins[J]. J Polym Res 23(7):128

    Google Scholar 

  5. Yuan Z, Yu J, He Z, Wu X, Rao B, Lu S, Jiang N (2014) Improved thermal properties of epoxy composites filled with thermotropic liquid crystalline epoxy grafted aluminum nitride[J]. Fibers Polym 15(12):2581–2590

    CAS  Google Scholar 

  6. Pfeifer CS (2014) Nanostructured multiphase polymer networks. Handbook of nanomaterials properties (pp. 1443–1464). Springer, Berlin

    Google Scholar 

  7. Heng Z, Chen Y, Zou H, Liang M (2015) Simultaneously enhanced tensile strength and fracture toughness of epoxy resins by a poly (ethylene oxide)-block-carboxyl terminated butadiene-acrylonitrile rubber dilock copolymer. RSC Adv 5:42362–42368

    CAS  Google Scholar 

  8. Kishi H, Kunimitsu Y, Nakashima Y (2015) Control of nanostructures generated in epoxy matrices blended with PMMA-b-PnBA-b-PMMA triblock copolymers. Express Polym Lett 9:23–35

    CAS  Google Scholar 

  9. Kishi H, Kunimitsu Y, Imade J, Oshitas S, Morishita Y, Asada M (2011) Nano-phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys. Polymer 52:760–768

    CAS  Google Scholar 

  10. George S, Puglia D, Kenny J, Jyotishkumarp P, Thomas S (2012) Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styrene-block-butadiene-block-styrene triblock copolymer systems. Polym Eng Sci 52:2336–2347

    CAS  Google Scholar 

  11. Liu J, Thompson Z, Sue H, Bates F (2010) Toughening of epoxies with block copolymer micelles of wormlike morphology[J]. Macromolecules 43:7238–7243

    CAS  Google Scholar 

  12. Thio YS, Wu J, Bates FS (2009) The role of inclusion size in toughening of epoxy resins by spherical micelles. J Polym Sci Part B Polym Phys 47:1125–1129

    CAS  Google Scholar 

  13. Kubel J, Grubbs R, Saad W, Cook R (2003) Mechanical properties of block copolymer vesicle and micelle modified epoxies. J Polym Sci B Polym Phys 41:2444–2456

    Google Scholar 

  14. Zhang H, Heng Z , Chen Y, Zou H, Liang M, Zeng z (2018) The effect of reaction-induced micro-phase separation of block copolymer on curing kinetics of epoxy thermosets[J]. J Polym Res 25(4):98

  15. Francis R, Baby DK (2016) A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset[J]. Colloid Polym Sci 294(3):565–574

    CAS  Google Scholar 

  16. Xu Z, Zheng S (2007) Reaction-induced microphase separation in epoxy thermosets containing poly(ε-caprolactone)-block-poly(n-butyl acrylate) Diblock copolymer[J]. Macromolecules 40(7):2548–2558

    CAS  Google Scholar 

  17. Uchiumi, N., Hamada, K., Kato, M., Ono, T., Yaginuma, S., & Ishiura, K. (2001). U.S. Patent No. 6,329,480. Washington, DC: U.S. Patent and Trademark Office

  18. Hamada, K., Ishiura, K., Kato, M., & Yaginuma, S. (2003). U.S. Patent No. 6,555,637. Washington, DC: U.S. Patent and Trademark Office

  19. Oertel, J., Kishii, S., Kilian, D., Hamada, K., Morishita, Y., Kurihara, T., & Ito, T. (2010). Acrylic TPE approaching automotive. TPE Magazine International 1, 34–35

  20. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sunol J (2014) ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23

    CAS  Google Scholar 

  21. Chiu Y, Chou I, Tseng W, Ma C (2008) Preparation and thermal properties of diglycidylether sulfone epoxy. Polym Degrad Stab 93:668–676

    CAS  Google Scholar 

  22. Aouf C, Nouailhas H, Fache M, Caillol S, Boutevin B, Fulcrand H (2013) Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin[J]. Eur Polym J 49:1185–1195

    CAS  Google Scholar 

  23. Doyle CD (1961) Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem 33:77–79

    CAS  Google Scholar 

  24. Wu C, Liu Y, Chiu Y, Chiu YS (2002) Thermal stability of epoxy resins containing flame retardant components: an evaluation with thermogravimetric analysis. Polym Degrad Stab 78:41–48

    CAS  Google Scholar 

  25. Olszak-Humienik M (2001) Dependence of thermal decomposition rate constant on temperature of reaction. J Thermanal Calorim 65:515–518

    CAS  Google Scholar 

  26. Carrasco F, Dionisi D, Martinelli A, Majone M (2006) Thermal stability of polyhydroxyalkanoates. J Appl Polym Sci 100:2111–2121

    CAS  Google Scholar 

  27. Marinović-Cincović M, Janković B, Jovanović V, Samarzijia-Jovanovic S, Markovic G (2013) The kinetic and thermodynamic analyses of non-isothermal degradation process of acrylonitrile-butadiene and ethylene-propylene-diene rubbers. Compos B Eng 45:321–332

    Google Scholar 

  28. Turmanova S, Genieva S, Vlaev L (2011) Kinetics of nonisothermal degradation of some polymer composites: change of entropy at the formation of the activated complex from the reagents. J Thermodyn 2011:1–10

    Google Scholar 

  29. Vyazovkin S, Burnham A, Criado J, Perez-Maqueda L, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    CAS  Google Scholar 

  30. Vyazovkin S (1997) Advanced isoconversional method. J Therm Anal 49:1493–1499

    CAS  Google Scholar 

  31. Doyle C (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642

    CAS  Google Scholar 

  32. Málek J (1992) The kinetic analysis of non-isothermal data. Thermochim Acta 200:257–269

    Google Scholar 

  33. Senum G, Yang R (1977) Rational approximations of the integral of the Arrhenius function. J Therm Anal 11:445–447

    Google Scholar 

  34. Cano L, Builes D, Tercjak A (2014) Morphological and mechanical study of nanostructured epoxy systems modified with amphiphilic poly (ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer. Polymer 55:738–745

    CAS  Google Scholar 

  35. Kwei T (1984) The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J Polym Sci Polym Lett Ed 22:307–313

    CAS  Google Scholar 

  36. Wu J, Thio Y, Bates F (2005) Structure and properties of PBO–PEO diblock copolymer modified epoxy. J Polym Sci Part B Polym Phys 43:1950–1965

    CAS  Google Scholar 

  37. Guo Q, Thomann R, Gronski W (2002) Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly (ethylene oxide)-b lock-poly (propylene oxide)-b lock-poly (ethylene oxide) triblock copolymers. Macromolecules 35:3133–3144

    CAS  Google Scholar 

  38. Meng Y, Zhang X (2014) Nanostructured epoxy composites[J]. Micro-and nanostructured epoxy/rubber blends 53-72

  39. Kishi H, Kunimitsu Y, Nakashima Y, Abe T, Imade S, Oshita S, Morishita Y, Asada M (2015) Control of nanostructures generated in epoxy matrices blended with PMMA-b-PnBA-b-PMMA triblock copolymers[J]. Express Polym Lett 9(1):23–35

    CAS  Google Scholar 

  40. Liu J, Thompson Z, Sue H, Bates F (2010) Toughening of epoxies with block copolymer micelles of wormlike morphology[J]. Macromolecules 43(17):7238–7243

    CAS  Google Scholar 

  41. George S, Hameed N, Jose S, George J, Parameswaranpillai J (2016) Dynamical mechanical thermal analysis of epoxy-/block-copolymer blends[J]

  42. Lizymol P, Thomas S (1993) Thermal behaviour of polymer blends: a comparison of the thermal properties of miscible and immiscible systems. Polym Degrad Stab 41:59–64

    CAS  Google Scholar 

  43. Guinesi LS, da Róz AL, Corradini E, Mattoso L, Teixeria E, Curvelo A (2006) Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures[J]. Thermochim Acta 447:190–196

    CAS  Google Scholar 

  44. Arshad MA, Maaroufi A, Benavente R, Perena J (2013) Thermal degradation kinetics of insulating/conducting epoxy/Zn composites under nonisothermal conditions[J]. Polym Compos 34:2049–2060

    Google Scholar 

  45. Levchik SV, Weil ED (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins-a review of the recent literature. Polym Int 53:1901–1929

    CAS  Google Scholar 

  46. Levchik S, Camino G, Luda M, Costa L, Costes B, Henry Y, Muller G, Morel E (1995) Mechanistic study of thermal behaviour and combustion performance of epoxy resins. II. TGDDM/DDS system[J]. Polym. Degrad. Stabil 48:359–370

    CAS  Google Scholar 

  47. Dyakonov T, Mann PJ, Chen Y, Stevenson WTK (1996) Thermal analysis of some aromatic amine cured model epoxy resin systems-II: residues of degradation. Polym Degrad Stab 54:67–83

    CAS  Google Scholar 

  48. Lin SC, Bulkin BJ, Pearce EM (1979) Epoxy resins. III Application of fourier transform IR to degradation studies of epoxy systems. J Polym Sci 17:3121–3148

    CAS  Google Scholar 

  49. Zhao Y, Yan N, Feng MW (2013) Thermal degradation characteristics of phenol–formaldehyde resins derived from beetle infested pine barks. Thermochim Acta 555:46–52

    CAS  Google Scholar 

  50. Wang Z, Han E, Ke W (2006) Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP–DPER–MEL coating[J]. Polym Degrad Stab 91:1937–1947

    CAS  Google Scholar 

  51. Montserrat S, Málek J, Colomer P (1998) Thermal degradation kinetics of epoxy–anhydride resins: I.: influence of a silica filler[J]. Thermochim Acta 313:83–95

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Guan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Zou, L., Zha, S. et al. Compatibility and thermal decomposition behavior of acrylic block copolymer modified epoxy resin. J Polym Res 27, 4 (2020). https://doi.org/10.1007/s10965-019-1903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1903-5

Keywords

Navigation