Skip to main content
Log in

Effect of water and carbonyl sulfide toxins in gas propylene feed in polymerization process on physical properties of polypropylene

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effects of water and carbonyl sulfide (COS) in propylene feed of polymerization process were examined in relation to the physical and mechanical properties of synthesized polypropylene (PP). The Samples were analyzed using gel permeation chromatography, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry (WAXS) and mechanical test. Molecular mass and isotacticity of PP were reduced by increasing poisons due to the limitation of the movement of polymer chains. The SEM images indicated that the effect of water and COS poisons on polymer morphology was insignificant. The results of DSC and optical tests revealed that an increase in water and COS poisons significantly increased the transparency of PP, which had been originated from the reduction of surface irregularities caused by escalated polymer atacticity. Nevertheless, the improvement in optical properties was very little for other properties, such as gloss and yellow index. The XRD results confirmed lower crystallinity due to escalated atacticity because of increased poisons. Furthermore, comparison of poison-contained and poison-free samples indicated that an increase in the amount of poisons led to greater tensile strength and heat distortion temperature (HDT). Since it is crucial to achieve the ultimate properties of the polymer, mechanical properties of the polymer should be considered to achieve improved transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cong Y, Hong Z, Zhou W, Chen W, Su F, Li H, Li X, Yang K, Yu X, Qi Z, Li L (2012) Conformational ordering on the growth front of isotactic polypropylene. Spherulite. Macromol 45:8674–8680

    Article  CAS  Google Scholar 

  2. De Rosa C, Auriemma F, Di Girolamo R (2013) Morphology and mechanical properties of the mesomorphic form of isotactic polypropylene in stereodefective polypropylene. Macromolecules 46:5202–5214

    Article  CAS  Google Scholar 

  3. De Rosa C, Auriemma F, Di Girolamo R (2008) The double role of comonomers on the crystallization behavior of isotactic polypropylene: propylene-hexene copolymers. Macromolecules 41:2172–2177

    Article  CAS  Google Scholar 

  4. Taghaddosi S, Akbari A, Yegani R (2017) Preparation, characterization and anti-fouling properties of nanoclays embedded polypropylene mixed matrix membranes. Chem Eng Res Des 125:35–45

    Article  CAS  Google Scholar 

  5. Nakamura K, Shimizu S, Umemoto S, Thierry A, Lotz B, Okui N (2008) Temperature dependence of crystal growth rate for [alpha] and [beta] forms of isotactic polypropylene. Polym J 40:915–922

    Article  CAS  Google Scholar 

  6. Zia Q, Androsch R, Radusch H-J, Piccarolo S (2006) Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  CAS  Google Scholar 

  7. Gadzinowska K, Piorkowska E (2003) Influence of sample thickness and surface nucleation on i-PP crystallization kinetics in DSC measurements. Polimery 48:790–799

    Article  CAS  Google Scholar 

  8. Funaki A, Takubo T, Kanai T (2016) Experimental analysis for extrusion screw geometry to produce highly transparent polypropylene sheets. Polym Eng Sci 50:420–427

    Article  CAS  Google Scholar 

  9. Sun C, Chen H, Guo B, Song G, Li P, Li Y, Gao J (2016) Changes of optical properties in the aging process of polypropylene. J Food Saf Qual 7(3):1203–1209

    Google Scholar 

  10. Xinli X, Xueying Q, Deyan K, Wenbo Z (2016) Optically transparent high temperature shape memory polymers. Soft Matter 12:2894–2900

    Article  CAS  Google Scholar 

  11. Paulino C (2016) Biaxially oriented high density polyethylene film with improved sealant layer. Mater Des 103:32-39. Paulino CM, inventor; Toray Plastics (America) Inc, assignee. Biaxially oriented high density polyethylene film with improved sealant layer. United States patent US 9,676,169. 2017

  12. Feldmann M (2016) The effects of the injection moulding temperature on the mechanical properties and morphology of polypropylene man-made cellulose fibre composites. Appl Sci Manufact 87:146–152

    Article  CAS  Google Scholar 

  13. Barbe PC, Cecchin G, Noristi L (1987) The catalytic system Ti-complex/MgCl 2. In catalytical and radical polymerization. Springer, Berlin, Heidelberg, pp 1–81

    Google Scholar 

  14. Terano M, Soga K (1994 Nov 1) Catalyst design for tailor-made polyolefins. Elsevier

  15. Pino P, Cioni P, Wei J (1987) Asymmetric hydrooligomerization of propylene. J Am Chem Soc 109:6189–6191

    Article  CAS  Google Scholar 

  16. Maddah HA (2016) Polypropylene as a promising plastic: A review. Am J Polym Sci 6:1):1–1):1

    Google Scholar 

  17. De Santis F, Pantani R (2013) Optical properties of polypropylene upon recycling. Sci World J. https://doi.org/10.1155/2013/354093

  18. Shibayama M, Imamura K-I, Katoh K, Nomura S (1991) Transparency of recycled polypropylene film. J Appl Polym Sci 42:1451–1458

    Article  CAS  Google Scholar 

  19. Sukhadia A-M, Rohlfing D-C, Johnson M-B, Wilkes G-L (2002) A comprehensive investigation of the origins of surface roughness and Haze in polyethylene blown films. J Appl Polym Sci 85:2396–2411

    Article  CAS  Google Scholar 

  20. Miwa T, Masayuki Y (2007) Structure and properties of injection-molded polypropylene with sorbitol-based clarifier. Polym Eng Sci 47:1441

    Article  CAS  Google Scholar 

  21. Ahmad Z, Kumar K-D, Saroop M, Preschilla N, Biswas A, Bellare J-R, Bhowmik A (2010) Highly transparent thermoplastic elastomer from isotactic polypropylene and styrene/ethylene-butylene/styrene triblock copolymer: structure-property correlations. Polym Eng Sci 50:331–341

    Article  CAS  Google Scholar 

  22. Stockland R-A, Foley S-R, Jordan R-F (2003) Reaction of Vinyl Chloride with Group 4 Metal Olefin Polymerization Catalysts. J Am Chem Soc 125:796–809

    Article  CAS  PubMed  Google Scholar 

  23. Bernland K, Goossens J, Smith P, Tervoort T (2016) On clarification of haze in polypropylene. J Polym Sci 54:865–874

    Article  CAS  Google Scholar 

  24. Li X, Guo C, Zhang Y, Liu K, Zhang J (2015) The morphology and mechanical properties of isotactic polypropylene injection-molded samples with the presence of β-nucleation agent and periodical shear field. J Macromol Sci Part B 54:215–229

    Article  CAS  Google Scholar 

  25. Janiak C, Blank F (2006) Metallocene catalysts for olefin oligomerization. InMacromolecular symposia 236(1) 14-22. Weinheim: WILEY-VCH Verlag.

  26. Quijada R, Rojas R, Bazan G, Komon ZJA, Mauler RS, Galland GB (2001) Synthesis of branched polyethylene from ethylene by tandem action of iron and zirconium single site catalysts. Macromolecules 34:2411–2417

    Article  CAS  Google Scholar 

  27. Lin CY, Chen MC, Mehta AK (2001) Assessment of Metallocene Propylene Polymers for Cast Film Applications. J Plast Film Sheet 17:113–127

    Article  CAS  Google Scholar 

  28. DeMeuse TM (2002) Processing and Film Properties of Polypropylene Made Using Metallocene Catalysts. J Plast Film Sheet 18:17–23

    Article  Google Scholar 

  29. Crosby CR, Chatterjee AM (2001) Effect of Formulation Parameters on Optical and Frictional Properties of Tubular Water Quenched Polypropylene Films. J Plast Film Sheet 17:128–151

    Article  CAS  Google Scholar 

  30. Xu T, Yu J, Jin Z (2001) Effects of crystalline morphology on the impact behavior of polypropylene. Mater Des 22:27–31

    Article  CAS  Google Scholar 

  31. Gocek I, Adanur S (2009) Effect of processing parameters on polypropylene film properties. InThe Fiber Society 2009 Fall Meeting and Technical Conference, The University of Georgia, Athens, GA

  32. Fatahi S, Ajji A, Lafleur P-G (2005) Correlation between structural parameters and property of PE blown films. J Plast Film Sheeting 21:281–305

    Article  CAS  Google Scholar 

  33. Khanarian G (2000) Rubber toughened and optically transparent blends of cyclic olefin copolymers. Polym Eng Sci 40:2590–2601

    Article  CAS  Google Scholar 

  34. Trezza TA, Krochta JM (2001) Specular reflection, gloss, roughness and surface heterogeneity of biopolymer coatings. J Appl Polym Sci 79:2221–2229

    Article  CAS  Google Scholar 

  35. Darncholvichit M (2003) Haze band formation and morphological composition in blown film extrusion. University of Massachusetts Lowell, Lowell

    Google Scholar 

  36. Wang L, Kamal M-R (2001) Light transmission and haze of polyethylene blown thin films. Polym Eng Sci 41:358–372

    Article  CAS  Google Scholar 

  37. Rinker JW (1979) Surface properties of blown low density polyethylene films. Paper synthetics conference, Proceedings of the Technical Association of the Pulp and Paper Industry, Washington, DC, USA, pp 129–136

  38. Stehing FC, Speed CS, Westerman L (1981) Causes of haze of low-density polyethylene blown films. Macromolecules 14:698–708

    Article  Google Scholar 

  39. Harban A-A, Samuel R (1967) Polymerization of olefins in the presence of a coordination catalyst and carbonyl sulfide, US Patent 3317502 A

    Google Scholar 

  40. Garoff T, Liskola E, Sormunen P(1987) Transition metals and organometallics as catalysts for olefin polymerization, ed. by Kaminsky, W and Sinn H, Springer-Verlag, Berlin, p.197.

  41. Tangjituabun K, Kim SY, Hiraoka Y, Taniike T, Terano M, Jongsomjit B, Praserthdam P (2008) Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler–Natta catalyst. Sci Technol Adv Mater 9(2):024402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Alshaiban A (2011) Propylene polymerization using 4th generation Z-N Catalysts: Polymerization kinetics and polymer microstructure investigation, Ph.D. Thesis Waterloo University

    Google Scholar 

  43. Dashti A, Ramazani A (2009) Kinetic and morphological investigation on the Mg(OEt)2 based Z-N catalyst for propylene polymerization using typical external donor. Macromol Symp 285:52–57

    Article  CAS  Google Scholar 

  44. SakuraT NY, Kasahara T, Mizunuma K, Yamaguchi N, Tashiro K, Amemiya Y (2005) Structural deformation behavior of isotactic polypropylene with different molecular characteristics during hot drawing process. Polymer 46(20):8846–8858

    Article  CAS  Google Scholar 

  45. Lotz B, Wittmann J, Lovinger A (1996) Structure and morphology of poly (propylenes): a molecular analysis. Polymer 37(22):4979–4992. https://doi.org/10.1016/0032-3861(96)00370-9.

    Article  CAS  Google Scholar 

  46. Morrow DR, Newman BA (1968) Crystallization of low-molecular-weight polypropylene fractions. J Appl Phy 39(11):4944–4950. https://doi.org/10.1063/1.1655891

    Article  CAS  Google Scholar 

  47. Van der Burgt F (2002) Crystallization of isotactic polypropylene: the influence of stereo-defects (Masters thesis). Technical University of Eindhoven, Eindhoven.

  48. De Rosa C, Auriemma F, Di Capua A, Resconi L, Guidotti S, Camuratie I (2004) Structure−property correlations in polypropylene from metallocene catalysts: stereodefective, regioregular isotactic polypropylene. J Am Chem Soc 126(51):17040–17049

    Article  PubMed  CAS  Google Scholar 

  49. Dealy J-M, Larson R-G (2006) Structure and Rheology of Molten Polymers. Hanser, Munich

    Book  Google Scholar 

  50. Sandler SR, Karo W, Bonesteel J, Pearce EM (1998) Polymer Synthesis and Characterization. Academic, USA

    Google Scholar 

  51. Brandrup J, Immergut E-H, Grulke E-A (1999) Polymer Handbook. John Wiley and Sons, New York

    Google Scholar 

  52. Mark J-E (1999) Polymer Data Handbook. Oxford University, NewYork

    Google Scholar 

  53. Farrow G (1963) Crystallite size’and melting point of polypropylene. Polymer 4:191–197

    Article  CAS  Google Scholar 

  54. Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Vörös G, Varga J, Pukánszky B (2014) Effect of the molecular structure of the polymer and nucleation on the optical properties of polypropylene homo-and copolymers. ACS Appl Mater Inter 6:7456–7463

    Article  CAS  Google Scholar 

  55. Phulkerd P, Hirayama S, Nobukawa S, Inoue T, Yamaguchi M (2014) Sstructure and mechanical anisotropy of injection-molded polypropylene with a plywood structure. Polym J 46:226–233

    Article  CAS  Google Scholar 

  56. Lai WC (2011) T he effect of self-assembled nanofibrils on the morphology and microstructure of poly (l-lactic acid). Soft Matter 7:3844–3851

    Article  CAS  Google Scholar 

  57. Yamaguchi M, Fukui T, Okamoto K, Sasaki S, Uchiyama Y, Ueoka C (2009) Anomalous molecular orientation of isotactic polypropylene sheet containing N, N′-dicyclohexyl-2, 6-naphthalenedicarboxamide. Polymer 50:1497–1504

    Article  CAS  Google Scholar 

  58. Uchiyama Y, Iwasaki S, Ueoka C, Fukui T, Okamoto K, Yamaguchi M (2009) Molecular orientation and mechanical anisotropy of polypropylene sheet containing N, N′-dicyclohexyl-2, 6-naphthalenedicarboxamide. J Polym Sci Part B Polym Phys 47:424–433

    Article  CAS  Google Scholar 

  59. Tenma M, Mieda N, Takamatsu S, Yamaguchi M (2008) Structure and properties for transparent polypropylene containing sorbitol-based clarifier. J Polym Sci Part B Polym Phys 46:41–47

    Article  CAS  Google Scholar 

  60. Wei Z, Zhang W, Chen G, Liang J, Yang S, Wang P, Liu L (2010) Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. Journal of thermal analysis and calorimetry 102(2):775–783

    Article  CAS  Google Scholar 

  61. Feng Y, Jin X, Hay J (1998) Effect of nucleating agent addition on crystallization of isotactic polypropylene. J Appl Polym Sci 69:2089–2095

    Article  CAS  Google Scholar 

  62. Simanke A-G, de Azeredo A-P, de Lemos C, Mauler R-S (2016) Influence of nucleating agent on the crystallization kinetics and morphology of polypropylene. Polímeros 26:152–160

    Article  Google Scholar 

  63. Pukhszky B, Mudra I, Staniek P (1997) Relation of crystalline structure and mechanical properties of nucleated polypropylene. J Vinyl Add Technol 3:53–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Shakeri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmand, S., Shakeri, A. & Arabi, H. Effect of water and carbonyl sulfide toxins in gas propylene feed in polymerization process on physical properties of polypropylene. J Polym Res 26, 195 (2019). https://doi.org/10.1007/s10965-019-1860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1860-z

Keywords

Navigation