Skip to main content

Fluorinated polyimide nanocomposites for low K dielectric applications

Abstract

A novel fluorinated amine compound prepared was characterized by 1H NMR, 19F NMR and FTIR. Subsequently, polymerized with pyromellitic dianhydride results in the formation of neat fluorinated polyimide matrix (PI). In addition, three different nanomaterials such as of graphene oxide (GO), Octa (aminophenyl) silsesquioxane (OAPS) and graphene oxide blended with Octa (aminophenyl) silsesquioxane (GO-OAPS) were reinforced separately with PI in varying weight percentages. The developed composites were studied for their thermal, dielectric and hydrophobic behaviour and compared. Comparatively the 7% OAPS-GO/PI exhibits lower dielectric constant (k = 2.1) than that of neat PI, GO/PI and OAPS/PI composites. The OAPS grafted onto the GO surface contributes for lower polarity due to its porous caged structure and contributes for higher insulation behaviour. Further, the 7% OAPS-GO/PI also exhibits higher contact angle (107°) due to the less polar nature of the composites which in turn contributes to enhanced hydrophobic behaviour. The data obtained from morphological, surface and dielectric studies indicate that the OAPS-GO/PI composites exhibited substantially improved hydrophobic and dielectric properties than that of GO/PI and OAPS/PI.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Sasikumar R, Ariraman M, Alagar M (2014) Design of lamellar structured POSS/BPZ polybenzoxazine nanocomposites as the novel class of ultra low k dielectric material. RSC Adv 4:19127–19136

    CAS  Google Scholar 

  2. Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26:3–65

    CAS  Google Scholar 

  3. Feger C, Franke H (1996) Polyimides in high-performance electronics packaging and optoelectronic applications. In: Ghosh MK, Mittal KL (eds) Polyimides fundamentals and applications. Marcel Decker, New York, pp 759–814

    Google Scholar 

  4. Yu P, Wang Y, Yu J, Zhu J, Hu Z (2018) Influence of different ratios of a-ODPA/a-BPDA on the properties of phenylethynyl terminated polyimide. J Polym Res 25(5):110

    Google Scholar 

  5. Muruganand S, Varayandass, Sa K, Mangalaraj D, Vijayan T M (2001) Dielectric and conduction properties of pure polyimide films. Polym Int 50:1089–1094

    CAS  Google Scholar 

  6. Kuntman A, Kuntman H (2000) A study on dielectric properties of a new polyimide film suitable for interlayer dielectric material in microelectronics applications. Microelectron J 31:629–634

    CAS  Google Scholar 

  7. Gunasekaran SG, Rajakumar K, Alagar M, Dharmendirakumar M (2014) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21(1):342

    Google Scholar 

  8. Zhang Y, Liu J, Wu X, Guo C, Qu L, Zhang X (2018) Trisilanolphenyl-POSS nano-hybrid poly (biphenyl dianhydride-p-phenylenediamine) polyimide composite films: miscibility and structure-property relationship. J Polym Res 25(6):139

    Google Scholar 

  9. Ghosh MK, Mittal KL (1996) Polyimide: fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  10. Geim A, Novoselov K (2007) The rise of grapheme. Nat Mater 6:183–191

    CAS  PubMed  Google Scholar 

  11. Devaraju S, Vengatesan MR, Alagar M (2011) Studies on thermal and dielectric properties of ether linked cyclohexyl diamine (ELCD)-based polyimide POSS nanocomposites (POSS-PI). High Perform Polym 23:99–111

    CAS  Google Scholar 

  12. Kurinchyselvan S, Sasikumar R, Ariraman M, Gomathipriya P, Alagar M (2016) Low dielectric behavior of amine functionalized MCM-41 reinforced polyimide nanocomposites. High Perform Polym 28(7):842–853

    CAS  Google Scholar 

  13. Husamelden E, Fan H (2019) Fluorinated functionalization of graphene oxide and its role as a reinforcement in epoxy composites. J Polym Res 26(2):42

    Google Scholar 

  14. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites, macromolecules, macromolecules, vol 43, pp 6515–6530

    Google Scholar 

  15. Rafiee MA, Rafiee ZJ, Wang H, Song ZZ, Yu Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    CAS  PubMed  Google Scholar 

  16. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301–3310

    CAS  Google Scholar 

  17. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43:2357–2363

    CAS  Google Scholar 

  18. Hontoria-Lucas C, Lopez-Peinado A, Lopez-Gonzalez JD, Rojas- Cervantes M, Martin-Aranda R (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:585–1592

    Google Scholar 

  19. Kotov NA, Dekany I, Fendler JH (1996) Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8:637–641

    CAS  Google Scholar 

  20. Szabo T, Szeri A, Dekany I (2005) Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43:87–94

    CAS  Google Scholar 

  21. Sasikumar R, Alagar M (2015) Dielectric and thermal behaviours of POSS reinforced polyurethane based polybenzoxazine nanocomposites. RSC Adv 5:33008–33015

    CAS  Google Scholar 

  22. Wahab MA, Mya KY, He C (2008) Synthesis ,morphology and properties of hydroxyl terminated-POSS/polyimide low-k nanocomposite films. J Polym Sci A Polym Chem 46:5887–5896

    Google Scholar 

  23. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696

    CAS  Google Scholar 

  24. Zhang W, Müller AHE (2013) Architecture self-assembly and properties of well-defined hybrid polymers based on Polyhedral Oligomeric Silsequioxane (POSS). Prog Polym Sci 38:1121–1162

    CAS  Google Scholar 

  25. Liang K, Li G, Toghiani H, Koo JH, Pittman CU (2005) Cyanate ester/ Polyhedral Oligomeric Silsesquioxane (POSS) nanocomposites:synthesis and characterization. Chem Mater 18:301–312

    Google Scholar 

  26. Lee YJ, Huang JM, Kuo SW, Lu JS, Chang FC (2005) Polyimide and polyhedral oligomeric Silsesquioxane nanocomposites for low-dielectric applications. Polymer 46:173–181

    CAS  Google Scholar 

  27. Laine RM (2005) Nanobuilding blocks based on the [OSiO1-5]x (x=6,8,10) octasilsesquioxanes. J Mater Chem 35:3725–3744

    Google Scholar 

  28. Liao WH, Yang SY, Hsiao ST, Wang YS, Li SM, Ma CCM, Tien HW, Zeng SJ (2014). ACS Appl Mater Interfaces 6:15802–15812

    CAS  PubMed  Google Scholar 

  29. Hariharan R, Sarojadevi M (2007) Synthesis and characterization of organo-soluble fluorinated polyimides. Polym Int 56:22–31

    CAS  Google Scholar 

  30. Govindaraj B, Sundararajan P, Sarojadevi M (2012) Synthesis and characterization of polyimide/polyhedral oligomeric silsesquioxane nanocomposites containing quinolyl moiety. Polym Int 61:1344–1352

    CAS  Google Scholar 

  31. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389

    CAS  Google Scholar 

  32. Ye YS, Yen YC, Chen WY, Cheng CC, Chang FC (2008) A simple approach toward low-dielectric polyimide nanocomposites: blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane. J Polym Sci A Polym Chem 46(18):6296–6304

    CAS  Google Scholar 

  33. Mohamed M, Kuo S (2019) Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites. Polymers 11(1):26

    Google Scholar 

  34. Mohamed MG, Kuo SW (2019) Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol Chem Phys 220(1):1800306

    Google Scholar 

  35. Xue Y, Liu Y, Lu F, Qu J, Chen H, Dai L (2012) Functionalization of graphene oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for multifunctional applications. J Phys Chem Lett 3:1607–1612

    CAS  PubMed  Google Scholar 

  36. Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM (2011) Thermal conductivity and structure of non-covalent functionalized graphene/ epoxy composites. Carbon 49:5107–5116

    CAS  Google Scholar 

  37. Liao WH, Tien HW, Hsiao ST, Li SM, Wang YS, Huang YL, Yang SY, Ma CCM, Wu YF (2013) Effects of multiwalled carbon nanotubes functionalization on the morphology and mechanical and thermal properties of carbon fiber/vinyl Ester composites. ACS Appl Mater Interfaces 5:3975–3982

    CAS  PubMed  Google Scholar 

  38. Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16:615–620

    Google Scholar 

  39. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    CAS  PubMed  Google Scholar 

  40. Wang Z, Nelson JK, Hillborg H, Zhao S, Schadler LS (2012) Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv Mater 24:3134–3137

    CAS  PubMed  Google Scholar 

  41. Huang J, Lim PC, Shen L, Pallathadka PK, Zeng K, He C (2005) Cubic silsesquioxane–polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Mater 53:2395–2404

    CAS  Google Scholar 

  42. Purushothaman R, Bilal IM, Palanichamy M (2011) Effect of chemical structure of aromatic dianhydrides on the thermal, mechanical and electrical properties of their terpolyimides with 4, 4′-oxydianiline. J Polym Res 18(6):1597–1604

    CAS  Google Scholar 

  43. Jonsher AK (1977) The ‘universal dielectric response. Nature 267:673–679

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alagar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 833 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurinchyselvan, S., Hariharan, A., Prabunathan, P. et al. Fluorinated polyimide nanocomposites for low K dielectric applications. J Polym Res 26, 207 (2019). https://doi.org/10.1007/s10965-019-1852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1852-z

Keywords

  • Polyimide
  • Bisphenol AF
  • Octa(aminophenyl) silsesquioxane (OAPS)
  • Graphene oxide
  • Hybrid composites
  • Thermal stability
  • Contact angle
  • Dielectric constant