Skip to main content
Log in

Initiator-free preparation and properties of polystyrene-based plastic scintillators

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of polystyrene-based scintillators have been prepared by thermal polymerization without any initiators. To investigate the influence of the primary additive and wavelength shifter on the performance of plastic scintillator, two primary additives and four wavelength shifters were added to the scintillators, respectively. The results showed that 2,5-diphenyloxazole (PPO) and 5-phenyl-2-[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole (POPOP) were the most adequate fluorescent dyes for initiator-free preparation of the polystyrene-based scintillators. The plastic scintillator containing 1% PPO and 0.02% POPOP possessed the highest fluorescence intensity. Initiator-containing polystyrene-based scintillator with the same concentration of PPO and POPOP (1% PPO, 0.02% POPOP and 0.01% AIBN) was also prepared. The light yield of the plastic scintillator without any initiators is 83.49% relative to the value of the standard sample EJ-200, which is higher 8% than that of initiator-containing plastic scintillator. Moreover, compared with the standard sample EJ-200 with a decay time of 2.09 s, the decay time of the initiator-free and initiator-containing plastic scintillator was 1.80s and 1.86 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dumazert J, Coulon R, Bertrand GHV, Normand S, Méchin L, Hamel M (2016) Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy. Nucl Instrum Methods Phys Res Sect A 819:25–32

    Article  CAS  Google Scholar 

  2. Lecoq P (2016) Development of new scintillators for medical applications. Nucl Instrum Methods Phys Res Sect A 809:130–139

    Article  CAS  Google Scholar 

  3. Metzger RL, Riper KAV, Eckerman KF, Leggett RW (2018) Detection of long-lived contaminants in cyclotron-produced radiopharmaceuticals by large area plastic scintillators. J Radioanal Nucl Chem 318:11–15

    Article  CAS  Google Scholar 

  4. Zhmurin PN, Lebedev VN, Adadurov AF, Pereymak VN, Gurkalenko YA (2014) Plastic scintillator for pulse shape neutrons and gamma quanta discrimination. Radiat Meas 62:1–5

    Article  CAS  Google Scholar 

  5. Zheng Z, Zhu J, Luo X, Xu Y, Zhang Q, Zhang X, Bi Y, Zhang L (2017) Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix. Nucl Instrum Methods Phys Res Sect A 850:12–17

    Article  CAS  Google Scholar 

  6. Palma MD, Quaranta A, Marchi T, Collazuol G, Carturan S, Cinausero M (2014) Red emitting phenyl-polysiloxane based scintillators for neutron detection. IEEE T Nucl Sci 61:2052–2058

    Article  Google Scholar 

  7. Bertrand GHV, Hamel M, Normand S, Sguerra F (2015) Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: state of the art. Nucl Instrum Methods Phys Res Sect A 776:114–128

    Article  CAS  Google Scholar 

  8. Rahmanifard R, Katebi F, Zahedi AR, Gholipour-Peyvandi R (2018) Synthesis and development of a vinyltoluene-based plastic scintillator. J Lumin 194:456–460

    Article  CAS  Google Scholar 

  9. Peng AD, Xiao DB, Ma Y, Yang WS, Yao JN (2005) Tunable emission from doped 1,3,5-triphenyl-2-pyrazoline organic nanoparticles. Adv Mater 17:2070–2073

    Article  CAS  Google Scholar 

  10. Viagin O, Masalov A, Bespalova I, Zelenskaya O, Tarasov V, Seminko V, Voloshina L, Zorenko Y, Malyukin Y (2016) Luminescent properties of composite scintillators based on PPO and o-POPOP doped SiO2 xerogel matrices. J Lumin 179:178–182

    Article  CAS  Google Scholar 

  11. Yemam HA, Mahl A, Tinkham JS, Koubek JT, Greife U, Sellinger A (2017) Highly soluble p-terphenyl and fluorene derivatives as efficient dopants in plastic scintillators for sensitive nuclear material detection. Chem Eur J 23:8921–8931

    Article  CAS  Google Scholar 

  12. Zhu J, Deng C, Jiang H, Zheng Z, Gong R, Bi Y, Zhang L, Lin R (2016) The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators. Nucl Instrum Methods Phys Res Sect A 835:136–141

    Article  CAS  Google Scholar 

  13. Tarancón A, Bagán H, García JF (2017) Plastic scintillators and related analytical procedures for radionuclide analysis. J Radioanal Nucl Chem 314:555–572

    Article  Google Scholar 

  14. Birks JB, Firk FWK (1965) The theory and practice of scintillation counting. Phys Today 18:60–60

    Article  Google Scholar 

  15. Bertrand GHV, Hamel M, Sguerra F (2014) Current status on plastic scintillators modifications. Chem Eur J 20:15660–15685

    Article  CAS  Google Scholar 

  16. Artikov A, Budagov J, Chirikov-Zorin I, Chokheli D, Lyablin M, Bellettini G, Menzione A, Tokar S, Giokaris N, Manousakis-Katsikakis A (2005) Properties of the Ukraine polystyrene-based plastic scintillator UPS 923A. Nucl Instrum Methods Phys Res Sect A 555:125–131

    Article  CAS  Google Scholar 

  17. Mirza SM, Razzaq A, Rehman SU, Mirza NM (2015) Influence of various geometries on detection efficiency of polystyrene, polyvinyl-toluene, and sodium iodide detectors using Geant4. Nucl Technol Radiat 30:188–197

    Article  CAS  Google Scholar 

  18. Ely J, Anderson K, Bates D, Kouzes R, Presti CL, Runkle R, Siciliano E, Weier D (2008) The use of energy information in plastic scintillator material. J Radioanal Nucl Chem 276:743–748

    Article  CAS  Google Scholar 

  19. Hull G, Zaitseva NP, Cherepy NJ, Newby JR, Stoeffl W, Payne SA (2009) New organic crystals for pulse shape discrimination. IEEE T Nucl Sci 56:899–903

    Article  CAS  Google Scholar 

  20. Zaitseva N, Rupert BL, Pawełczak I, Glenn A, Martinez HP, Carman L, Faust M, Cherepy N, Payne S (2012) Plastic scintillators with efficient neutron/gamma pulse shape discrimination. Nucl Instrum Methods Phys Res Sect A 668:88–93

    Article  CAS  Google Scholar 

  21. Shestakova I, Ovechkina E, Gaysinskiy V, Antal JJ, Bobek L, Nagarkar V (2007) A high spatial resolution sensor for thermal neutron imaging. IEEE T Nucl Sci 54:1797–1800

    Article  CAS  Google Scholar 

  22. Watanabe M, Katsumata M, Ono H, Suzuki T, Miyata H, Itoh Y, Ishida K, Tamura M, Yamaguchi Y (2015) First performance test of newly developed plastic scintillator for radiation detection. Nucl Instrum Methods Phys Res Sect A 770:197–202

    Article  CAS  Google Scholar 

  23. Park JM, Kim HJ, Hwang YS, Kim DH, Park HW (2014) Scintillation properties of quantum-dot doped styrene based plastic scintillators. J Lumin 146:157–161

    Article  CAS  Google Scholar 

  24. Zaitseva NP, Glenn AM, Mabe AN, Carman ML, Hurlbut CR, Inman JW (2018) Recent developments in plastic scintillators with pulse shape discrimination. Nucl Instrum Methods Phys Res Sect A 889:97–104

    Article  CAS  Google Scholar 

  25. Lee CH, Son J, Kim T, Kim YK (2017) Characteristics of plastic scintillators fabricated by a polymerization reaction. Nucl Eng Technol 49:592–597

    Article  CAS  Google Scholar 

  26. Basile LJ (2004) Characteristics of plastic scintillators. J Chem Phys 27:801–806

    Article  Google Scholar 

  27. Clark GW, Scherb F, Smith WB (2004) Preparation of large plastic scintillators. Rev Sci Instrum 28:433–437

    Article  Google Scholar 

  28. Trefilova LN, Kudin AM, Kovaleva LV, Zaslavsky BG, Zosim DI, Bondarenko SK (2002) Concentration dependence of the light yield and energy resolution of NaI:TI and CsI:TI crystals excited by gamma, soft X-rays and alpha particles. Nucl Instrum Methods Phys Res Sect A 486:474–481

    Article  CAS  Google Scholar 

  29. Fang H, Lu S, Wang L, Ding R, Wang H, Feng J, Chen Q, Sun H (2013) Preparation and time-resolved fluorescence study of RGB organic crystals. Org Electron 14:389–395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Sichuan Provincial Education Department (No.16ZB0146), Longshan Academic Talent Research Supporting Program of SWUST (No.18LZX552) and National Natural Science Foundation of China (No.51602267). We are grateful to Shenye Liu and Xing Zhang of the Laser Fusion Research Center of the China Academy of Engineering Physics for their help in the testing of decay time and light yield.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yewei Xu or Guanjun Chang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Deng, H., Lei, H. et al. Initiator-free preparation and properties of polystyrene-based plastic scintillators. J Polym Res 26, 177 (2019). https://doi.org/10.1007/s10965-019-1838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1838-x

Keywords

Navigation