Skip to main content
Log in

Preparation and properties of nanocomposites composed of a water-soluble nylon and chitin nanofibers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nanocomposites composed of a water-soluble nylon (P-70, polyalkyleneoxide-modified poly(ɛ-caprolactum), and chitin nanofibers (ChNFs) were prepared by a casting method of the aqueous resin/fiber dispersion. P-70 was crosslinked with a resol-type phenolic resin (PR) and its ChNF nanocomposites were prepared to provide water resistance. The P-70/PR and P-70/PR/ChNF exhibited excellent water-resistance. The FT-IR analysis revealed that the crosslinked structure was formed by the reaction of amide groups of P-70 and methylol groups of PR. The glass transition temperature (Tg) of P-70/PR increased with increasing PR content, whereas the dispersion of ChNFs was deteriorated. Although the addition of ChNF to P-70 hardly affected the Tg, the addition of ChNF to P-70/PR caused a lowering of Tg. The tensile strength and modulus for P-70/ChNF nanocomposites increased with increasing ChNF content. The tensile strength of P-70/PR was lower than that of P-70, which increased by the addition of ChNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Duan B, Hung Y, Lu A, Zhang L (2018) Recent advances in chitin based materials constructed via physical methods. Prog Polym Sci 82:1–33

    Article  CAS  Google Scholar 

  2. Kargarzadeh H, Mariano M, Hung J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  3. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18

    Article  CAS  Google Scholar 

  4. Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32

    Article  CAS  Google Scholar 

  5. Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441

    Article  CAS  Google Scholar 

  6. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    Article  CAS  Google Scholar 

  7. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Article  CAS  Google Scholar 

  8. Ji Y, Liang K, Shen X, Bowlin GL (2014) Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr Polym 101:68–74

    Article  CAS  Google Scholar 

  9. Goodrich JD, Winter WT (2007) α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8:252–257

    Article  CAS  Google Scholar 

  10. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588

    Article  CAS  Google Scholar 

  11. Lee SY, Chun SJ, Kang IA, Park JY (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55

    Article  Google Scholar 

  12. Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34:6527–6530

    Article  CAS  Google Scholar 

  13. Chang PR, Jian R, Yu J, Ma X (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:420–425

    Article  CAS  Google Scholar 

  14. Salaberria AM, Labidi J, Fernandes SCM (2014) Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem Eng J 256:356–364

    Article  CAS  Google Scholar 

  15. Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62:130–136

    Article  CAS  Google Scholar 

  16. Li X, Li X, Ke B, Shi X, Du Y (2011) Cooperative performance of chitin whisker and rectorite fillers on chitosan films. Carbohydr Polym 85:747–752

    Article  CAS  Google Scholar 

  17. Ifuku S, Ikuta A, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H (2013) Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers. Carbohydr Polym 98:1198–1202

    Article  CAS  Google Scholar 

  18. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5:1046–1051

    Article  CAS  Google Scholar 

  19. Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT-Food Sci Technol 76:33–39

    Article  CAS  Google Scholar 

  20. Nair KG, Dufresne A (2004) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–665

    Article  Google Scholar 

  21. Nair KG, Dufresne A (2004) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4:666–674

    Article  Google Scholar 

  22. Li M, Peng Q, Luo B, Zhou C (2015) The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. Eur Polym J 68:190–206

    Article  Google Scholar 

  23. Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46:5637–5644

    Article  CAS  Google Scholar 

  24. Junkasem J, Rujiravanit R, Supaphol P (2006) Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibers by electrospinning. Nanotechnology 17:4519–4528

    Article  CAS  Google Scholar 

  25. Junkasem J, Rujiravanit R, Gray BP, Supaphol P (2010) X-ray diffraction and dynamic mechanical analyses of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibers. Polym Int 59:85–91

    Article  CAS  Google Scholar 

  26. Deng Q, Li J, Yang J, Li D (2014) Optical and flexible a-chitin nanofibers reinforced poly(vinyl alcohol) (PVA) composite film: fabrication and property. Compos Part A 67:55–60

    Article  CAS  Google Scholar 

  27. Shibata M, Enjoji M, Sakazume K, Ifuku S (2016) Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan. Carbohydr Polym 144:89–97

    Article  CAS  Google Scholar 

  28. Shibata M, Fujigasaki J, Enjoji M, Shibita A, Teramoto N, Ifuku S (2018) Amino acid-cured bio-based epoxy resins and their biocomposites with chitin- and chitosan-nanofibers. Eur Polym J 98:216–225

    Article  CAS  Google Scholar 

  29. Wu J, Lin H, Meredith JC (2014) Poly(ethylene oxide) bionanocomposites reinforced with chitin nanofiber networks. Polymer 84:267–274

    Article  Google Scholar 

  30. Herrera N, Salaberria AM, Mathew AP, Oksman K (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A 83:89–97

    Article  CAS  Google Scholar 

  31. Herrera N, Roch H, Salaberria AM, Pino-Orellana MA, Labidi J, Fernandes SCM, Radic D, Leiva A, Oksman K (2016) Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: preparation and characterization. Mater Design 92:846–852

    Article  CAS  Google Scholar 

  32. Zeng M, Gao H, Wu Y, Fan L, Li A (2010) Preparation and characterization of nanocomposite films from chitin whisker and waterborne poly(ester-urethane) with or without ultra-sonification treatment. J Macromol Sci Part A 47:867–876

    Article  CAS  Google Scholar 

  33. Huang J, Zou JW, Chang PR, Yu JH, Dufresne A (2011) New waterborne polyurethane-based nanocomposites reinforced with low loading levels of chitin whisker. Express Polym Lett 5:362–373

    Article  CAS  Google Scholar 

  34. Calvo-Correas T, Garrido P, Alonso-Varona A, Palomares T, Corcuera MA, Eceiza A (2019) Biocompatible thermoresponsive polyurethane bionanocomposites with chitin nanocrystals. J Appl Polym Sci 136:47430

    Article  Google Scholar 

  35. Peppel WJ (1961) Water-soluble polyamides. J Polym Sci 51:S64–S66

    Article  CAS  Google Scholar 

  36. Maslyuk AF, Bereznitskii GK, Petrova VV, Khranovskii VA, Khramova TS, Kravchuk VA (1991) Synthesis and properties of water-soluble light-sensitive copolyamides. Polym Sci USSR 33:1816–1821

    Article  Google Scholar 

  37. Neuse EW, Perlwitz AG, Schmitt S (1991) Water-soluble polyamides as potential drug carriers. III. Relative main-chain stabilities of side chain-functionalized aspartamide polymers o aqueous-phase dialysis. Angew Makromol Chem 192:35–50

    Article  CAS  Google Scholar 

  38. Swarts JC, Neuse EW, Perlwitz AG, Stephanou A, Lamprecht GJ (1993) Water-soluble polyamides as potential drug carriers. VI. Synthesis of amine- and carboxy-functionalized carrier polymers by high-temperature solution polymerization in polyphosphoric acid. Angew Makromol Chem 207:123–125

    Article  CAS  Google Scholar 

  39. Neuse EW, Perlwitz AG, Barbosa AP (1994) Water-soluble polyamides as potential drug carriers. VIII. Poly(alkylene oxide)-grafted polyaspartamides bearing ethylenediamine side-group functions. J Appl Polym Sci 54:57–63

    Article  CAS  Google Scholar 

  40. Chiba U, Neuse EW, Swarts JC, Lamprecht GJ (1994) Water-soluble polyamides as potential drug carriers. VII. Synthesis of polymers conaining intrachain- or extrachain-type amine ligands by interfacial polymerization. Angew Makromol Chem 218:137–152

    Article  Google Scholar 

  41. Caldwell G, Neuse EW, Perlwitz AG (1997) Water soluble polyamides as potential drug carriers. IX. Polyaspartamides grafted with amine-terminated poly(ethylene oxide) chains. J Appl Polym Sci 66:911–919

    Article  CAS  Google Scholar 

  42. Bariyanga J, Johnson MT, Mmutlane EM, Neuse EW (2005) A water-soluble polyamide containing cis-dicarboxylato-chelated platinum(II). J Inorg Organomet Polym Mater 15:335–340

    Article  CAS  Google Scholar 

  43. Viola BM, Abraham TE, Arathi DS, Sreekumar E, Pillai MR, Thomas TJ, Pillai CKS (2008) Synthesis and characterization of novel water-soluble polyamide based on spermine and aspartic acid as a potential gene delivery vehicle. Express Polym Lett 2:330–338

    Article  Google Scholar 

  44. Bai Y, Huang L, Huang T, Long J, Zhou Y (2013) Synthesis and characterization of a water-soluble nylon copolyamide. Polymer 54:4171–4178

    Article  CAS  Google Scholar 

  45. Matsumi D, Nemoto T, Yamamoto H (2007) Method for producing aqueous solution of water-soluble polyamide. JP2007-231087A (Toray Industries Inc.)

  46. Sakata J, Matsukawa T, Kawata H (2014) Fiber treatment agent, carbon fibers treated with fiber treatment agent, and carbon fiber composite material containing said carbon fibers. WO2014136888A1 (Sumitomo Seika Chemicals Co.)

  47. Oun AA, Rhim JW (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohyd Polym 169:467–479

    Article  CAS  Google Scholar 

  48. Li MC, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Naozumi Teramoto and Dr. Toshiaki Shimasaki of our department for the helpful suggestions. We are also grateful to Mr. Ryusuke Osada of Material Analysis Center of our university for assisting in measuring FE-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibata.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, R., Shibata, M. Preparation and properties of nanocomposites composed of a water-soluble nylon and chitin nanofibers. J Polym Res 26, 168 (2019). https://doi.org/10.1007/s10965-019-1834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1834-1

Keywords

Navigation