Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes

  • M. Shaban
  • H. AbdAllah
  • L. Said
  • Ashour M. AhmedEmail author
Original Paper


In this study, a simple and low-cost method is introduced to fabricate polyethersulfone/TiO2 nanotubes (PES/TiO2NTs) membranes. The titanium dioxide nanotubes (TiO2NTs) are prepared by the hydrothermal method. The diameter of the nanotubes is ranging from 10 to 13 nm. TiO2NTs/PES mixed matrix membranes of different TiO2NTs % (0.18%, 0.35%, 0.53%, and 0.85%) are prepared by phase inversion method. The effects of TiO2NTs %, dye concentration, dye type, and contact time on the dye removal percent and flux are studied. The results showed that the removal % and permeate flux of the membrane for both desalination and dyes separation are enhanced through adding TiO2NTs. Also, these membranes show nanofiltration (NF)-reverse osmosis (RO) behavior at 200 mbar vacuum pressure.


Polyethersulfone TiO2 nanotubes Dyes separation Water desalination 



This work is partially supported by the Support and Project Finance Office, Beni-Suef University, Egypt.

Supplementary material

10965_2019_1831_MOESM1_ESM.docx (142 kb)
ESM 1 (DOCX 141 kb)


  1. 1.
    Ching KP, How YN (2018) Review of low-cost point-of-use water treatment systems for developing communities. NPJ Clean Water 1:11 CrossRefGoogle Scholar
  2. 2.
    Clemencia R, Paul VB, Richard L, Palenque B, Brian D, Angus C, Philip W (2009) Indirect potable reuse: a sustainable water supply alternative. Int J Environ Res Public Health 6:1174–1209CrossRefGoogle Scholar
  3. 3.
    Mona AA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9:3077–3092CrossRefGoogle Scholar
  4. 4.
    Azile N, Anele M, Richard MM, Philiswa NN (2018) Wastewater treatment using membrane technology. Chapter pp 29–40 Google Scholar
  5. 5.
    Andy CS, Walter K, Yufeng Z, Xianshe F (2014) Vacuum membrane distillation for desalination of water using hollow fiber membranes. J Membr Sci 455:131–142CrossRefGoogle Scholar
  6. 6.
    Mohamed K, Takeshi M (2004) Pervaporation and vacuum membrane distillation processes: modeling and experiments. AIChE J 50:1697–1712CrossRefGoogle Scholar
  7. 7.
    Abu-Zeid MAE, Zhang Y, Dong H, Zhang L, Chen H-L, Hou L (2015) A comprehensive review of vacuum membrane distillation technique. Desalination 356:1–14CrossRefGoogle Scholar
  8. 8.
    Javed A, Mansour A, Lawrence AD, Arun KS, Muthumareeswaran MR, Mukhtar H, Abdullah SA (2016) Atomic layer deposition of TiO2 film on a polyethersulfone membrane: separation applications. J Polym Res 23:1–9CrossRefGoogle Scholar
  9. 9.
    Kesting RE (1985) Synthetic polymeric membranes. A structural perspective2nd edn. Wiley, New YorkGoogle Scholar
  10. 10.
    Nunes SP, Peinemann K-V (2001) Membrane technology in the chemical industry. Wiley, WeinheimCrossRefGoogle Scholar
  11. 11.
    Law YN, Mohammad A, Choe PL, Nidal H (2010) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33Google Scholar
  12. 12.
    Hung W-S, Lin T-J, Chiao Y-H, Arijit S, Hsiao Y-C, Wickramasinghe SR, Hu C-C, Lee K-R, Lai J-Y (2018) Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. J Mater Chem A 6:19445–19454CrossRefGoogle Scholar
  13. 13.
    Arash M, Ahmad R, Mohsen J, Majid P, Maryam K (2012) The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination 306:41–50CrossRefGoogle Scholar
  14. 14.
    Xue L, Jian H, Yu Z, Yaoping L, Ziming L, Zengnian S (2016) Characterization and antifouling performance of negatively charged PES/mesoporous silica ultrafiltration membrane for raw water filtration. Desalin Water Treat 57:10980–10987CrossRefGoogle Scholar
  15. 15.
    Yuqing Z, Xing S, Zhenhua J, Yueling W (2011) Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil. J Hazard Mater 192:559–567CrossRefGoogle Scholar
  16. 16.
    Maximous N, Nakhla G, Wan W, Wong K (2009) Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci 341:67–75CrossRefGoogle Scholar
  17. 17.
    Garcıa A, Rodrıguez B, Ozturk D, Rosales M, Diaz DI, Mautner A (2018) Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polym Bull 75:2053–2069CrossRefGoogle Scholar
  18. 18.
    Dizge N, Gonuldas H, Ozay Y, Ates H, Ocakoglu K, Harputlu E, Yildirim S, Unyayar A (2017) Synthesis and performance of antifouling and self-cleaning polyethersulfone/ graphene oxide composite membrane functionalized with photoactive semiconductor catalyst. Water Sci Technol 75:670–685CrossRefGoogle Scholar
  19. 19.
    Hung W-S, Chiao Y-H, Arijit S, Lin Y-W, Wickramasinghe SR, Hu C-C, Tsai H-A, Lee K-R, Lai J-Y (2019) Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance. Carbon 142:337–345CrossRefGoogle Scholar
  20. 20.
    Li J-H, Shao X-S, Qing Z, Li M-Z, Zhang Q-Q (2013) The double effects of silver nanoparticles on the PVDF membrane: surface hydrophilicity and antifouling performance. Appl Surf Sci 265:663–670CrossRefGoogle Scholar
  21. 21.
    Lassaad G, Zulfiqar AR, Sher BK, Khalid AA, Mohammad HA, El-Shahawi MS, Muhammad IR, Alberto F, Enrico D, Abdullah MA (2016) Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. J Taiwan Inst Chem E 65:405–419CrossRefGoogle Scholar
  22. 22.
    Li J-F, Xu Z-L, Yang H, Yu L-Y, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732CrossRefGoogle Scholar
  23. 23.
    Adewale G, Nawshad A, Virginie D, Shadi WH (2016) A critical review on recent polymeric and nanoenhanced membranes for reverse osmosis. RSC Adv 6:8134–8163CrossRefGoogle Scholar
  24. 24.
    Pei SG, Ahmad FI (2015) Review: is interplay between nanomaterial and membrane technology the way forward for desalination? J Chem Technol Biotechnol 90:971–980CrossRefGoogle Scholar
  25. 25.
    Silvia S, Francesco G, Mirko F, Marcel EB, Christiane C, Enrico D, Alberto F (2017) Preparation and characterization of polymeric-hybrid PES/TiO2 hollow fiber membranes for potential applications in water treatment. Fibers 5:1–19CrossRefGoogle Scholar
  26. 26.
    Kristina F, Paulina S, Igor A, Amira AL, Isabell T, Mathias K, Andrea P, Jan G, Agnes S (2018) Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water. Catalysts 8:376CrossRefGoogle Scholar
  27. 27.
    Behnam K, Ishita B, Tanushree G, Thomas T, Mohtada S (2018) Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Sci Rep 8:784CrossRefGoogle Scholar
  28. 28.
    Kyung CS, Muhammad BQ, Sung HJ (2014) Hydrothermal synthesis of TiO2 nanotubes and their application as an over-layer for dye-sensitized solar cells. RSC Adv 4:23223–23230CrossRefGoogle Scholar
  29. 29.
    Rajesha K, Arun MI, Ismail AF, Suraya AR, Amir A (2013) Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination 316:76–84CrossRefGoogle Scholar
  30. 30.
    Shaban M, Heba A, Said L, Hamdy HS, Abdel Khalek A (2015) Preparation and characterization of TiO2 NTs and effect of TiO2 NTs% on the salt rejection and flux of polyethersulfone membrane. J Mater Sci Eng A 5:65–68Google Scholar
  31. 31.
    Lin Y-J, Wang L, Chiu W-Y (2005) Preparation and characterization of titania nanotubes and hybrid materials derived from them. J Vac Sci Technol B 23:2398–2402CrossRefGoogle Scholar
  32. 32.
    Shaban M, Ashraf AM, Abdallah H, Abd El-Salam HM (2018) Titanium dioxide nanoribbons/multi-walled carbon nanotube nanocomposite blended polyethersulfone membrane for brackish water desalination. Desalination 444:129–141CrossRefGoogle Scholar
  33. 33.
    Shaban M, AbdAllah H, Said L, Hamdy HS, Abdel Khalek A (2015) Titanium dioxide nanotubes embedded mixed matrix PES membranes characterization and membrane performance. Chem Eng Res Des 95:307–316CrossRefGoogle Scholar
  34. 34.
    Vahid V, Madaeni SS, Khataee AR, Salehi E, Zinadini S, Monfared HA (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29CrossRefGoogle Scholar
  35. 35.
    Qamar M, Yoon CR, Oh HJ, Lee NH, Park K, Kim DH, Lee KS, Lee WJ, Kim SJ (2008) Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal Today 131:3–14CrossRefGoogle Scholar
  36. 36.
    Evrim C, Hosik P, Hyeongyu C, Heechul C (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45:274–282CrossRefGoogle Scholar
  37. 37.
    Ariza M, Benavente J (2001) Streaming potential along the surface of polysulfone membranes: a comparative study between two different experimental systems and determination of electrokinetic and adsorption parameters. J Membr Sci 190:119–132CrossRefGoogle Scholar
  38. 38.
    Kaminska G, Bohdziewicz J, Calvo JI, Prádanos P, Palacio L, Hernández A (2015) Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance. J Membr Sci 493:66–79CrossRefGoogle Scholar
  39. 39.
    Juang L-C, Lee C-K, Wang C-C, Hung S-H, Lyu MD (2008) Adsorptive removal of acid red 1 from aqueous solution with surfactant modified titanate nanotubes. Environ Eng Sci 25:519–528CrossRefGoogle Scholar
  40. 40.
    Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinc B (2012) Novel antifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82CrossRefGoogle Scholar
  41. 41.
    Zonghua W, Hairong Y, Jianfei X, Feifei Z, Feng L, Yanzhi X, Yanhui L (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54CrossRefGoogle Scholar
  42. 42.
    Arthanareeswaran G, Starov VM (2011) Effect of solvents on the performance of polyethersulfone ultrafiltration membranes: investigation of metal ion separations. Desalination 267:57–63CrossRefGoogle Scholar
  43. 43.
    Manying Z, Robert WF, Kaisong Z (2014) Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J Membr Sci 471:274–284CrossRefGoogle Scholar
  44. 44.
    WHO (World Health Organisation) (1993) Guidelines for drinking water quality. Recommendations, vol 1. 2nd edn. WHO, Geneva, p 130Google Scholar
  45. 45.
    Bruggen BVD, Vandecasteele C, Gestel TV, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56CrossRefGoogle Scholar
  46. 46.
    Lau WJ, Ismail AF (2010) Application of response surface methodology in PES/SPEEK blend NF membrane for dyeing solution treatment. Membr Water Treat 1:49–60CrossRefGoogle Scholar
  47. 47.
    Abid MF, Zablouk MA, Abid-Alameer MA (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration Iranian. J Environ Health Sci Eng 9:1–9CrossRefGoogle Scholar
  48. 48.
    Shaban M, Ashraf AM, Abukhadra MR (2018) TiO2 nanoribbons /carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci Rep 8:781CrossRefGoogle Scholar
  49. 49.
    Shaban M, Mustafa M, El Sayed AM (2016) Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; the influence of copper doping, annealing, and deposition parameters. Mater Sci Semicond Process 56:329–343CrossRefGoogle Scholar
  50. 50.
    Ahmad AL, Harris WA, Syafile, Seng OB (2002) Removal of dye from wastewater of textile industry using membrane technology. J Teknol 36:31–44Google Scholar
  51. 51.
    Macedonio F, Drioli E (2010) Membrane engineering progresses in desalination and water reuse. Membr Water Treat 1:75–81CrossRefGoogle Scholar
  52. 52.
    Kilduff JE, Mattaraj S, Pieracci JP, Belfort G (2000) Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter. Desalination 132:133–142CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  2. 2.Engineering Research Division, Chemical Engineering & Pilot Plant DepartmentNational Research Center (NRC)CairoEgypt
  3. 3.Department of Chemistry, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations