Skip to main content
Log in

Preparation of epoxy-based shape memory polymers for deployable space structures using diglycidyl ether of ethoxylated bisphenol-A

  • SHORT COMMUNICATION
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To develop epoxy-based shape memory polymers (ESMPs) with a high switching temperature and good mechanical and shape memory properties for deployable space structures, the crosslink density and chain flexibility of the conventional epoxy resin, diglycidyl ether of bisphenol-A, were controlled by adding a flexible epoxy resin, diglycidyl ether of ethoxylated bisphenol-A with six oxyethylene units (DGEEBA-6). With increasing DGEEBA-6 content, the crosslink density of the ESMPs increased, but their glass transition temperature (Tg) decreased. The ESMPs with suitable switching temperatures (120–135 °C) for deployable space structures showed enhanced toughness, modulus, tensile strength, elongation at break, and shape memory properties. The ESMPs had fast full recovery times of only 80 s at Tg + 20 °C. DGEEBA-6 was shown to be a good modifier of ESMPs for deployable space structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001

    Article  Google Scholar 

  2. Santo L, Quadrini F, Accettura A, Villadei W, Walter V (2014) Shape memory composites for self-deployable structures in aerospace applications. Procedia Eng 88:42–47

    Article  Google Scholar 

  3. Santo L, Quadrini F, Bellisario D (2016) Shape memory composite antennas for space applications. Mater Sci Eng 161(1):012066

    Google Scholar 

  4. Kumar KSS, Biju R, Nair CPR (2013) Progress in shape memory epoxy resins. React Funct Polym 73(2):421–430

    Article  Google Scholar 

  5. Song WB, Wang LY, Wang ZD (2011) Synthesis and thermomechanical research of shape memory epoxy systems. Mater Sci Eng A 529:29–34

    Article  CAS  Google Scholar 

  6. Liu Y, Han C, Tan H, Du X (2010) Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater Sci Eng A 527(10):2510–2514

    Article  Google Scholar 

  7. Leng J, Wu X, Liu Y (2009) Effect of a linear monomer on the thermomechanical properties of epoxy shape memory polymer. Mater Struct 18(9):095031

    Article  Google Scholar 

  8. Jo MJ, Chio H, Kim GH, Yu WR, Park M, Kim Y, Park JK, Youk JH (2018) Preparation of epoxy shape memory polymers for deployable space structures using flexible diamines. Fiber Polym 19(9):1799–1805

    Article  CAS  Google Scholar 

  9. Yang X, Huang W, Yu Y (2012) Epoxy toughening using low viscosity liquid diglycidyl ether of ethoxylated bisphenol-A. J Appl Polym Sci 123(4):1913–1921

    Article  CAS  Google Scholar 

  10. Wu XL, Kang SF, Xu XJ, Xiao F, Ge XL (2014) Effect of the crosslinking density and programming temperature on the shape fixity and shape recovery in epoxy-anhydride shape-memory polymers. J Appl Polym Sci 131(15):40559

    Google Scholar 

  11. Calvo-Correas T, Gabilondo N, Alonso-Varona A, Palomares T, Corcuera MA, Eceiz A (2016) Shape-memory properties of crosslinked biobased polyurethanes. Eur Polym J 78:253–263

    Article  CAS  Google Scholar 

  12. Tcharkhtchi A, Abdallah-Elhirtsi S, Ebrahimi K, Fitoussi J, Shirinbayan M, Farzaneh S (2014) Some new concepts of shape memory effect of polymers. Polymers 6(4):1144–1163

    Article  Google Scholar 

  13. Santiago D, Fernandez-Francos X, Ferrando F, Flor SD (2015) Shape-memory effect in hyperbranched poly(ethyleneimine)-modified epoxy thermosets. J Polym Sci Part B 53(13):924–933

    Article  CAS  Google Scholar 

  14. Santiago D, Fabregat-Sanjuan A, Ferrando F, Flor SD (2016) Recovery stress and work output in hyperbranched poly(ethyleneimine)-modified shape-memory epoxy polymers. J Polym Sci Part B 54(10):1002–1013

    Article  CAS  Google Scholar 

  15. Xiao X, Kong D, Qiu X, Zhang W, Liu Y, Zhang S, Zhang F, Hu Y, Leng J (2015) Shape memory polymers with high and low temperature resistant properties. Sci Rep 5:14137

    Article  Google Scholar 

  16. Ferry JD (1980) Viscoelastic properties of polymers. John Wiley & Sons

  17. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8):1852–1856

    Article  CAS  Google Scholar 

  18. Feldkamp DM, Rousseau IA (2010) Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol Mater Eng 295(8):726–734

    Article  CAS  Google Scholar 

  19. Rousseau IA, Xie T (2010) Shape memory epoxy: composition, structure, properties and shape memory performances. J Mater Chem 20(17):3431–3441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agency for Defense Development as a collaborative preliminary core technology research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Ho Youk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, M.J., Choi, H., Jang, H. et al. Preparation of epoxy-based shape memory polymers for deployable space structures using diglycidyl ether of ethoxylated bisphenol-A. J Polym Res 26, 129 (2019). https://doi.org/10.1007/s10965-019-1801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1801-x

Keywords

Navigation