Skip to main content
Log in

Blend membranes of sulfonated poly (ether ether ketone) and thermoplastic poly (urethane) for fuel cells

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Membranes used in polymer electrolyte membrane fuel cells (PEMFCs) have critical importance because their properties directly affect the performance of fuel cell. For this purpose, blend membranes based on sulfonated poly (ether ether ketone) (sPEEK)-thermoplastic poly (urethane) (TPU) were prepared by solution casting method in different compositions. Generally, sPEEK-TPU blend membranes were thermally resistant up to 190 °C due to the presence of sulfonic acid groups regardless blend composition. The proton conductivity (σ) of blend membranes significantly increased compared to TPU100. After 24 h in water, σ values of blend membranes were found to be 3.9–18.7 mS cm−1 and rose with sPEEK content. A similar trend was also observed for water uptake (WU %), sulfonation degree (DS %) and ion exchange capacity (IEC). While sPEEK100 membrane has a fragile structure, blending with TPU led to dense, uniform and defect-free membrane surface. Further, all the blend membranes had no obvious phase separation. sPEEK80-TPU20 showed good mechanical properties to be used in PEMFCs with good compatibility. Preliminarily, the methanol permeability of blend membrane containing 40% of sPEEK was found to be 1 × 10−11 cm2 s−1. Unlike, the blend membranes deteriorated with methanol if sPEEK content was more than 40% in composition. The membrane selectivity value of sPEEK40-TPU60 was found to be  4.7× 108 S s/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26. https://doi.org/10.1016/J.MEMSCI.2005.01.035

    Article  CAS  Google Scholar 

  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384. https://doi.org/10.1016/J.IJHYDENE.2010.05.017

    Article  CAS  Google Scholar 

  3. Rehman W, Liaqat K, Fazil S, Saeed S, Waseem M, Shakeel M, Mir S, Bibi I, Guo CY (2019) Chemically tethered functionalized graphene oxide based novel sulfonated polyimide composite for polymer electrolyte membrane. J Polym Res 26:82. https://doi.org/10.1007/s10965-019-1744-2

    Article  CAS  Google Scholar 

  4. Wang H, Li X, Zhuang X, Cheng B, Wang W, Kang W, Shi L, Li H (2017) Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J Power Sources 340:201–209. https://doi.org/10.1016/J.JPOWSOUR.2016.11.072

    Article  CAS  Google Scholar 

  5. Ketpang K, Lee K, Shanmugam S (2014) Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl Mater Interfaces 6:16734–16744. https://doi.org/10.1021/am503789d

    Article  CAS  PubMed  Google Scholar 

  6. Wang M, Liu G, Tian Z, Shao Y, Wang L, Ye F, Tran MX, Yun Y, Lee JK (2017) Microstructure-modified proton exchange membranes for high-performance direct methanol fuel cells. Energy Convers Manag 148:753–758. https://doi.org/10.1016/J.ENCONMAN.2017.06.020

    Article  CAS  Google Scholar 

  7. Brandão L, Rodrigues J, Madeira LM, Mendes A (2010) Methanol crossover reduction by Nafion modification with palladium composite nanoparticles: application to direct methanol fuel cells. Int J Hydrog Energy 35:11561–11567. https://doi.org/10.1016/J.IJHYDENE.2010.04.096

    Article  Google Scholar 

  8. Lufrano F, Baglio V, Di Blasi O et al (2012) Solid polymer electrolyte based on sulfonated polysulfone membranes and acidic silica for direct methanol fuel cells. Solid State Ionics 216:90–94. https://doi.org/10.1016/J.SSI.2012.03.015

    Article  CAS  Google Scholar 

  9. Dönmez G, Deligöz H (2015) A comparative study on sulfonated PEEK and PVDF blend membranes for direct methanol fuel cells. Int J Membrane Sci Techno 2:10–18. https://doi.org/10.15379/2410-1869.2015.02.02.02

    Article  Google Scholar 

  10. Fu Y, Manthiram A, Guiver MD (2007) Acid–base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochem Commun 9:905–910. https://doi.org/10.1016/J.ELECOM.2006.12.001

    Article  CAS  Google Scholar 

  11. Yang T (2008) Preliminary study of SPEEK/PVA blend membranes for DMFC applications. Int J Hydrog Energy 33:6772–6779. https://doi.org/10.1016/J.IJHYDENE.2008.08.022

    Article  CAS  Google Scholar 

  12. Fu Y, Manthiram A, Guiver MD (2006) Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem Commun 8:1386–1390. https://doi.org/10.1016/J.ELECOM.2006.06.018

    Article  CAS  Google Scholar 

  13. Che Q, Chen N, Yu J, Cheng S (2016) Sulfonated poly(ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes. Solid State Ionics 289:199–206. https://doi.org/10.1016/J.SSI.2016.03.009

    Article  CAS  Google Scholar 

  14. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2015) Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly(vinylphosphonic acid) with PVDF by means of poly(glycidyl methacrylate) grafts. J Polym Res 22:154. https://doi.org/10.1007/s10965-015-0796-1

    Article  CAS  Google Scholar 

  15. Pedicini R, Saccà A, Carbone A, Gatto I, Patti A, Passalacqua E (2013) Study on sulphonated polysulphone/polyurethane blend membranes for fuel cell applications. Chem Phys Lett 579:100–104. https://doi.org/10.1016/J.CPLETT.2013.06.035

    Article  CAS  Google Scholar 

  16. Vasanthakumari R (2010) Design and development of thermoplastic polyurethane based composite membranes. In: ASME 2010 8th international fuel cell science, engineering and technology conference, vol 1. ASME, Brooklyn, New York, pp 21–26

  17. Othman MHD, Ismail AF, Mustafa A (2007) Physico-chemical study of sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell application. MPJ 2:10–28

  18. Deligöz H, Vatansever S, Öksüzömer F, Koç SN, Özgümüş S, Gürkaynak MA (2008) Preparation and characterization of sulfonated polyimide ionomers via post-sulfonation method for fuel cell applications. Polym Adv Technol 19:1126–1132. https://doi.org/10.1002/pat.1096

    Article  CAS  Google Scholar 

  19. Zaidi SMJ (2003) Polymer sulfonation-a versatile route to prepare proton-conducting membrane material for advanced technologies. Arab J Sci Eng 28:183–194

  20. Naresh Muthu R, Rajashabala S, Kannan R (2015) Synthesis and characterization of polymer (sulfonated poly-ether-ether-ketone) based nanocomposite (h-boron nitride) membrane for hydrogen storage. Int J Hydrog Energy 40:1836–1845. https://doi.org/10.1016/J.IJHYDENE.2014.11.136

    Article  CAS  Google Scholar 

  21. Doğan H, Inan TY, Koral M, Kaya M (2011) Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl Clay Sci 52:285–294. https://doi.org/10.1016/J.CLAY.2011.03.007

    Article  Google Scholar 

  22. Zhao C, Zhang G, Na H (2015) In: Fang J, Qiao J, Wilkinson DP, Zhang J (eds) Electrochemical polymer electrolyte membranes, 1st edition. CRC Press, Boca Raton. https://doi.org/10.1201/b18369

    Google Scholar 

  23. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci 229:95–106. https://doi.org/10.1016/J.MEMSCI.2003.09.019

    Article  CAS  Google Scholar 

  24. He C, Guiver MD, Mighri F, Kaliaguine S (2013) Surface orientation of hydrophilic groups in sulfonated poly(ether ether ketone) membranes. J Colloid Interface Sci 409:193–203. https://doi.org/10.1016/J.JCIS.2013.06.063

    Article  CAS  PubMed  Google Scholar 

  25. Lee Y-H, Kang B-K, Kim H-D, Yoo HJ, Kim JS, Huh JH, Jung YJ, Lee DJ (2009) Effect of hot pressing/melt mixing on the properties of thermoplastic polyurethane. Macromol Res 17:616–622. https://doi.org/10.1007/BF03218918

    Article  CAS  Google Scholar 

  26. Li L, Zhang J, Wang Y (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226:159–167. https://doi.org/10.1016/J.MEMSCI.2003.08.018

    Article  CAS  Google Scholar 

  27. Huang RYM, Shao P, Burns CM, Feng X (2001) Sulfonation of poly(ether ether ketone)(PEEK): kinetic study and characterization. J Appl Polym Sci 82:2651–2660. https://doi.org/10.1002/app.2118

    Article  CAS  Google Scholar 

  28. Chi NTQ, Bae B, Kim D (2013) Electro-osmotic drag effect on the methanol permeation for sulfonated poly(ether ether ketone) and Nafion117 membranes. J Nanosci Nanotechnol 13:7529–7534. https://doi.org/10.1166/jnn.2013.7894

    Article  CAS  PubMed  Google Scholar 

  29. Xu G, Li J, Ma L, Xiong J, Mansoor M, Cai W, Cheng H (2017) Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler. J Membr Sci 534:68–72. https://doi.org/10.1016/J.MEMSCI.2017.04.016

    Article  CAS  Google Scholar 

  30. Gao L, Kong T, Guo G, Huo Y (2016) Proton conductive and low methanol permeable PVA-based zwitterionic membranes. Int J Hydrog Energy 41:20373–20384. https://doi.org/10.1016/J.IJHYDENE.2016.08.048

    Article  CAS  Google Scholar 

  31. Che Q, Liu L, Li Z, Wang Y, Wang L, Wang J, Ma L (2017) Research on methanol permeation of proton exchange membranes with incorporating ionic liquids. J Polym Res 24:172. https://doi.org/10.1007/s10965-017-1331-3

    Article  CAS  Google Scholar 

  32. Deligöz H, Yılmaztürk S, Karaca T, Özdemir H, Koç SN, Öksüzömer F, Durmuş A, Gürkaynak MA (2009) Self-assembled polyelectrolyte multilayered films on Nafion with lowered methanol cross-over for DMFC applications. J Membr Sci 326:643–649. https://doi.org/10.1016/J.MEMSCI.2008.10.055

    Article  Google Scholar 

  33. Deligöz H, Yılmaztürk S, Yılmazoğlu M, Damyan H (2010) The effect of self-assembled multilayer formation via LbL technique on thermomechanical and transport properties of Nafion®112 based composite membranes for PEM fuel cells. J Membr Sci 351:131–140. https://doi.org/10.1016/J.MEMSCI.2010.01.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Associate Professor Nevra ERCAN for her valuable contributions related to Dynamic Mechanical Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Deligöz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dönmez, G., Okutan, M. & Deligöz, H. Blend membranes of sulfonated poly (ether ether ketone) and thermoplastic poly (urethane) for fuel cells. J Polym Res 26, 133 (2019). https://doi.org/10.1007/s10965-019-1792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1792-7

Keywords

Navigation