Skip to main content
Log in

Synthesis and characterization of cellulose based graft copolymers with binary vinyl monomers for efficient removal of cationic dyes and Pb(II) ions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cellulose grafted with 2-acrylamido-2-methylpropane sulfonic acid (AASO3H) and binary comonomer acrylonitrile (AN) were synthesized and characterized by FTIR, XRD, SEM, TGA/DTA and swelling studies. Adsorption parameters like contact time, temperature, pH and concentration were optimized for maximum adsorption of organic dyes and Pb(II) ions. Dye adsorption behavior studied for cationic malachite green (MG) and crystal violet (CV) dyes followed the order Cell-g-AASO3H > Cell-g-AASO3H-co-AN > cellulose. Order for adsorption of dyes were reported as MG > CV. Pseudo-second-order model is best-fitted with the experimental data and adsorption capacity from Langmuir adsorption isotherm for MG, and CV were 61.46 and 55.71 mg.g−1 respectively, for Cell-g-AASO3H. Percent uptake capacities followed the order Cell-g-AASO3H-co-AN > Cell-g-AASO3H > cellulose for Pb(II) ions. Maximum adsorption capacities for Pb(II) ions from Langmuir adsorption isotherm were 154.32 and 181.49 mg.g−1 for Cell-g-AASO3H and Cell-g-AASO3H-co-AN, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater 174:694–699. https://doi.org/10.1016/j.jhazmat.2009.09.106

    Article  CAS  PubMed  Google Scholar 

  2. Tsuboy MS, Angeli JPF, Mantovani MS, Knasmüller S, Umbuzeiro GA, Ribeiro LR (2007) Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI disperse blue 291 in the human hepatic cell line HepG2. Toxicol in Vitro 21:1650–1655. https://doi.org/10.1016/j.tiv.2007.06.020

    Article  CAS  PubMed  Google Scholar 

  3. Bharathi KS, Ramesh ST (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci 3:773–790. https://doi.org/10.1007/s13201-013-0117-y

    Article  Google Scholar 

  4. Okieimen FE, Sogbaike CE, Ebhoaye JE (2005) Removal of cadmium and copper ions from aqueous solution with cellulose graft copolymers. Sep Purif Technol 44:85–89. https://doi.org/10.1016/j.seppur.2004.11.003

    Article  CAS  Google Scholar 

  5. Badiei M, Asim N, Jahim JM, Sopian K (2014) Comparison of chemical pretreatment methods for cellulosic biomass. APCBEE Proc 9:170–174. https://doi.org/10.1016/j.apcbee.2014.01.030

    Article  CAS  Google Scholar 

  6. Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35:489–511. https://doi.org/10.1002/ep.12257

    Article  CAS  Google Scholar 

  7. Chauhan GS, Dhiman SK, Guleria LK, Kaur I (2002) Polymers from renewable resources: kinetics studies of the radiochemical graft copolymerization of styrene onto cellulose extracted from pine needles and the effect of some additives on the grafting parameters in an aqueous medium. J Appl Polym Sci 83:1490–1500. https://doi.org/10.1002/app.10142

    Article  CAS  Google Scholar 

  8. Chauhan GS, Lal H, Mahajan S (2004) Synthesis, characterization, and swelling responses of poly(N-isopropylacrylamide)- and hydroxypropyl cellulose-based environmentally sensitive biphasic hydrogels. J Appl Polym Sci 91:479–488. https://doi.org/10.1002/app.13135

    Article  CAS  Google Scholar 

  9. Hokkanen S, Bhatnagar A, Sillanpa M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  10. Sahoo PK, Jena DK (2018) Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose -g-polyacrylonitrile)/montmorillonite biodegradable nanocomposite. J Polym Res 25:260. https://doi.org/10.1007/s10965-018-1659-3

    Article  CAS  Google Scholar 

  11. Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polym (United Kingdom) 70:A1–A16. https://doi.org/10.1016/j.polymer.2015.05.041

    Article  CAS  Google Scholar 

  12. Chauhan GS, Guleria L, Sharma R (2005) Synthesis, characterization and metal ion sorption studies of graft copolymers of cellulose with glycidyl methacrylate and some comonomers. Cellulose 12:97–110. https://doi.org/10.1023/B:CELL.0000049349.66326.5e

    Article  CAS  Google Scholar 

  13. Kumar R, Sharma RK, Singh AP (2019) Grafting of cellulose with N-isopropylacrylamide and glycidyl methacrylate for efficient removal of Ni(II), Cu(II) and Pd(II) ions from aqueous solution. Sep Purif Technol 219:249–259. https://doi.org/10.1016/j.seppur.2019.03.035

    Article  CAS  Google Scholar 

  14. Sharma RK, Kumar R, Singh AP (2019) Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers. Sep Purif Technol 209:684–697. https://doi.org/10.1016/j.seppur.2018.09.011

    Article  CAS  Google Scholar 

  15. Goel NK, Kumar V, Misra N, Varshney L (2015) Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water. Carbohydr Polym 132:444–451. https://doi.org/10.1016/j.carbpol.2015.06.054

    Article  CAS  PubMed  Google Scholar 

  16. Kumar R, Sharma RK, Singh AP (2018) Removal of organic dyes and metal ions by cross-linked graft copolymers of cellulose obtained from the agricultural residue. J Environ Chem Eng 6:6037–6048. https://doi.org/10.1016/j.jece.2018.09.021

    Article  CAS  Google Scholar 

  17. Bello K, Sarojini BK, Narayana B (2019) Design and fabrication of environmentally benign cellulose based hydrogel matrix for selective adsorption of toxic dyes from industrial effluvia. J Polym Res 26:62. https://doi.org/10.1007/s10965-019-1724-6

    Article  CAS  Google Scholar 

  18. Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7:2607–2615. https://doi.org/10.1021/am507601m

    Article  CAS  PubMed  Google Scholar 

  19. Du H, Han R, Tang E et al (2018) Synthesis of pH-responsive cellulose-g-P4VP by atom transfer radical polymerization in ionic liquid, loading, and controlled release of aspirin. J Polym Res 25:205. https://doi.org/10.1007/s10965-018-1601-8

    Article  CAS  Google Scholar 

  20. Sharma RK, Singh J, Chauhan GS (2010) Study of immobilization of protease and sorption of bsa on cellulose, cellulose derivatives, and graft copolymers. BioResources 5:2547–2555

    Google Scholar 

  21. Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256. https://doi.org/10.1016/j.foodchem.2015.10.127

    Article  CAS  PubMed  Google Scholar 

  22. Kale RD, Gorade VG (2018) Preparation of acylated microcrystalline cellulose using olive oil and its reinforcing effect on poly(lactic acid) films for packaging application. J Polym Res 25:81. https://doi.org/10.1007/s10965-018-1470-1

    Article  CAS  Google Scholar 

  23. Chiappone A, Nair J, Gerbaldi C, Zeno E, Bongiovanni R (2014) Flexible and high performing polymer electrolytes obtained by UV-induced polymer–cellulose grafting. RSC Adv 4:40873–40881. https://doi.org/10.1039/C4RA07299E

    Article  CAS  Google Scholar 

  24. Masoumi A, Hemmati K, Ghaemy M (2016) Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water. Chemosphere 146:253–262. https://doi.org/10.1016/j.chemosphere.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  25. Chakraborty S, Chowdhury S, Das Saha P (2011) Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydr Polym 86:1533–1541. https://doi.org/10.1016/j.carbpol.2011.06.058

    Article  CAS  Google Scholar 

  26. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159–168. https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  27. Zhou Y, Zhang M, Wang X, Huang Q, Min Y, Ma T, Niu J (2014) Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind Eng Chem Res 53:5498–5506. https://doi.org/10.1021/ie404135y

    Article  CAS  Google Scholar 

  28. Zhou Y, Min Y, Qiao H, Huang Q, Wang E, Ma T (2015) Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int J Biol Macromol 74:271–277. https://doi.org/10.1016/j.ijbiomac.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  29. Zheng X, Li X, Li J, Wang L, Jin W, liu J, Pei Y, Tang K (2018) Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int J Biol Macromol 107:283–289. https://doi.org/10.1016/j.ijbiomac.2017.08.169

    Article  CAS  PubMed  Google Scholar 

  30. Ruan C-Q, Strømme M, Lindh J (2018) Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr Polym 181:200–207. https://doi.org/10.1016/j.carbpol.2017.10.072

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Zhao L, Peng H, Wu J, Liu Z, Guo X (2016) Removal of anionic dyes from aqueous solutions by cellulose-based adsorbents: equilibrium, kinetics, and thermodynamics. J Chem Eng Data 61:3266–3276. https://doi.org/10.1021/acs.jced.6b00340

    Article  CAS  Google Scholar 

  32. Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303. https://doi.org/10.1016/j.chemosphere.2015.07.078

    Article  CAS  PubMed  Google Scholar 

  33. Chauhan GS, Chauhan K, Chauhan S, Kumar S, Kumari A (2007) Functionalization of pine needles by carboxymethylation and network formation for use as supports in the adsorption of Cr6+. Carbohydr Polym 70:415–421. https://doi.org/10.1016/j.carbpol.2007.04.020

    Article  CAS  Google Scholar 

  34. Chauhan GS, Chauhan S, Kumar S, Kumari A (2008) A study in the adsorption of Fe(2+) and NO(3)(−) on pine needles based hydrogels. Bioresour Technol 99:6464–6470. https://doi.org/10.1016/j.biortech.2007.11.044

    Article  CAS  PubMed  Google Scholar 

  35. Chauhan GS, Mahajan S (2002) Use of novel hydrogels based on modified cellulosics and methacrylamide for separation of metal ions from water systems. J Appl Polym Sci 86:667–671. https://doi.org/10.1002/App.10943

    Article  CAS  Google Scholar 

  36. Barsbay M, Kavaklı PA, Tilki S, Kavaklı C, Güven O (2018) Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media. Radiat Phys Chem 142:70–76. https://doi.org/10.1016/j.radphyschem.2017.03.037

    Article  CAS  Google Scholar 

  37. Sokker HH, Gad YH, Ismail SA (2012) Synthesis of bifunctional cellulosic adsorbent by radiation induced graft polymerization of glycidyl methacrylate-co-methacrylic acids. J Appl Polym Sci 126:E54–E62. https://doi.org/10.1002/app.34220

    Article  CAS  Google Scholar 

  38. Monier M, Akl MA, Ali WM (2014) Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. Int J Biol Macromol 66:125–134. https://doi.org/10.1016/j.ijbiomac.2014.01.068

    Article  CAS  PubMed  Google Scholar 

  39. Sharma RK, Chauhan GS (2009) Synthesis and characterization of graft copolymers of 2-hydroxyethyl methacrylate and some comonomers onto extracted cellulose for use in separation technologies. BioResources 4:986–1005

    CAS  Google Scholar 

  40. Hajeeth T, Vijayalakshmi K, Gomathi T, Sudha PN (2013) Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer. Int J Biol Macromol 62:59–65. https://doi.org/10.1016/j.ijbiomac.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  41. Hajeeth T, Sudha PN, Vijayalakshmi K, Gomathi T (2014) Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer. Int J Biol Macromol 66:295–301. https://doi.org/10.1016/j.ijbiomac.2014.02.027

    Article  CAS  PubMed  Google Scholar 

  42. Güçlü G, Gürdaǧ G, Özgümüş S (2003) Competitive removal of heavy metal ions by cellulose graft copolymers. J Appl Polym Sci 90:2034–2039. https://doi.org/10.1002/app.12728

    Article  CAS  Google Scholar 

  43. Ding Z, Yu R, Hu X, Chen Y, Zhang Y (2014) Graft copolymerization of epichlorohydrin and ethylenediamine onto cellulose derived from agricultural by-products for adsorption of Pb(II) in aqueous solution. Cellulose. 21:1459–1469. https://doi.org/10.1007/s10570-014-0246-y

    Article  CAS  Google Scholar 

  44. Sharma RK, Kumar R, Singh AP (2018) Extraction of cellulose micro-whiskers from rice husk: a greener approach. J Nanosci Nanotechnol 18:3702–3708

    Article  CAS  Google Scholar 

  45. Sharma RK, Lalita SAP, Chauhan GS (2014) Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium. Int J Biol Macromol 64:368–376. https://doi.org/10.1016/j.ijbiomac.2013.12.028

    Article  CAS  PubMed  Google Scholar 

  46. Lalita SAP, Sharma RK (2017) Synthesis and characterization of graft copolymers of chitosan with {NIPAM} and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions. Int J Biol Macromol 99:409–426. https://doi.org/10.1016/j.ijbiomac.2017.02.091

    Article  CAS  PubMed  Google Scholar 

  47. Jeffery GH, Bassett J, Mendham J, Denney RC (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn. New York 696. https://doi.org/10.1016/0160-9327(90)90087-8

    Article  Google Scholar 

  48. Sharma RK, Lalita (2011) Synthesis and characterization of graft copolymers of N-Vinyl-2-Pyrrolidone onto guar gum for sorption of Fe2+ and Cr6+ ions. Carbohydr Polym 83:1929–1936. https://doi.org/10.1016/j.carbpol.2010.10.068

    Article  CAS  Google Scholar 

  49. Lalita SAP, Sharma RK (2017) Selective sorption of Fe(II) ions over Cu(II) and Cr(VI) ions by cross-linked graft copolymers of chitosan with acrylic acid and binary vinyl monomer mixtures. Int J Biol Macromol 105:1202–1212. https://doi.org/10.1016/j.ijbiomac.2017.07.163

    Article  CAS  PubMed  Google Scholar 

  50. Singha AS, Shama A, Thakur VK (2008) Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre. Bull Mater Sci 31:7–13. https://doi.org/10.1007/s12034-008-0002-8

    Article  CAS  Google Scholar 

  51. Luo MT, Li HL, Huang C, Zhang HR, Xiong L, Chen XF, Chen XD (2018) Cellulose-based absorbent production from bacterial cellulose and acrylic acid: synthesis and performance. Polymers (Basel). https://doi.org/10.3390/polym10070702

    Article  Google Scholar 

  52. Huacai G, Wan P, Dengke L (2006) Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr Polym 66:372–378. https://doi.org/10.1016/j.carbpol.2006.03.017

    Article  CAS  Google Scholar 

  53. Mukherjee A, Halder S, Datta D, Anupam K, Hazra B, Kanti Mandal M, Halder G (2017) Free radical induced grafting of acrylonitrile on pre-treated rice straw for enhancing its durability and flame retardancy. J Adv Res 8:73–83. https://doi.org/10.1016/j.jare.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  54. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  55. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kumar R, Sharma RK, Singh AP (2018) Grafted cellulose: a bio-based polymer for durable applications. Polym Bull 75:2213–2242. https://doi.org/10.1007/s00289-017-2136-6

    Article  CAS  Google Scholar 

  57. Kumar R, Sharma RK, Singh AP (2017) Cellulose based grafted biosorbents-journey from lignocellulose biomass to toxic metal ions sorption applications-a review. J Mol Liq 232:62–93

    Article  CAS  Google Scholar 

  58. Konicki W, Aleksandrzak M, Mijowska E (2017) Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem Eng Res Des 123:35–49. https://doi.org/10.1016/j.cherd.2017.03.036

    Article  CAS  Google Scholar 

  59. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  60. Rahman N, Haseen U (2014) Equilibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb(II) by a hybrid inorganic–organic material: polyacrylamide zirconium(IV) iodate. Ind Eng Chem Res 53:8198–8207. https://doi.org/10.1021/ie500139k

    Article  CAS  Google Scholar 

  61. Kumar V, Rehani V, Kaith BS, Saruchi (2018) Synthesis of a biodegradable interpenetrating polymer network of Av-cl-poly(AA-ipn-AAm) for malachite green dye removal: kinetics and thermodynamic studies. RSC Adv 8:41920–41937. https://doi.org/10.1039/c8ra07759b

    Article  CAS  Google Scholar 

  62. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  63. Saruchi KV, Rehani V, Kaith BS (2018) Microwave-assisted synthesis of biodegradable interpenetrating polymer network of aloe vera–poly(acrylic acid-co-acrylamide) for removal of malachite green dye: equilibrium, kinetics and thermodynamic studies. Iran Polym J (English Ed) 27:913–926. https://doi.org/10.1007/s13726-018-0665-y

    Article  CAS  Google Scholar 

  64. Naseeruteen F, Hamid NSA, Suah FBM, Ngah WSW, Mehamod FS (2018) Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. Int J Biol Macromol 107:1270–1277. https://doi.org/10.1016/j.ijbiomac.2017.09.111

    Article  CAS  PubMed  Google Scholar 

  65. Sharma AK, Priya KBS et al (2019) Selective removal of cationic dyes using response surface methodology optimized gum acacia-sodium alginate blended superadsorbent. Int J Biol Macromol 124:331–345. https://doi.org/10.1016/j.ijbiomac.2018.11.213

    Article  CAS  PubMed  Google Scholar 

  66. Gündüz F, Bayrak B (2017) Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J Mol Liq 243:790–798. https://doi.org/10.1016/j.molliq.2017.08.095

    Article  CAS  Google Scholar 

  67. Gopi S, Pius A, Thomas S (2016) Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J Water Process Eng 14:1–8. https://doi.org/10.1016/j.jwpe.2016.07.010

    Article  Google Scholar 

  68. Sharma AK, Priya KBS et al (2019) Efficient capture of eosin yellow and crystal violet with high performance xanthan-acacia hybrid super-adsorbent optimized using response surface methodology. Colloids Surf B Biointerfaces 175:314–323. https://doi.org/10.1016/j.colsurfb.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  69. Baghdadi M, Jafari A, Pardakhti A (2016) Removal of crystal violet from aqueous solutions using functionalized cellulose microfibers: a beneficial use of cellulosic healthcare waste. RSC Adv 6:61423–61433. https://doi.org/10.1039/C6RA08901A

    Article  CAS  Google Scholar 

  70. Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767–773. https://doi.org/10.1016/j.jhazmat.2009.06.060

    Article  CAS  PubMed  Google Scholar 

  71. Krishnani KK, Meng X, Christodoulatos C, Boddu VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234. https://doi.org/10.1016/j.jhazmat.2007.09.113

    Article  CAS  PubMed  Google Scholar 

  72. Asuquo ED, Martin AD (2016) Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: characterisation, kinetic and isotherm studies. J Environ Chem Eng 4:4207–4228. https://doi.org/10.1016/j.jece.2016.09.024

    Article  CAS  Google Scholar 

  73. Li Y, Du Q, Liu T et al (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47:1898–1904. https://doi.org/10.1016/j.materresbull.2012.04.021

    Article  CAS  Google Scholar 

  74. Wang C, Wang H, Gu G (2018) Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption. Carbohydr Polym 182:21–28. https://doi.org/10.1016/j.carbpol.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  75. Wang C, Wang H (2018) Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere 192:1–4. https://doi.org/10.1016/j.chemosphere.2017.10.125

    Article  CAS  PubMed  Google Scholar 

  76. Wang C, Wang H, Cao Y (2018) Pb(II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids Surf A Physicochem Eng Asp 556:177–184. https://doi.org/10.1016/j.colsurfa.2018.08.036

    Article  CAS  Google Scholar 

  77. Abdelhafez AA, Li J (2016) Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J Taiwan Inst Chem Eng 61:367–375. https://doi.org/10.1016/j.jtice.2016.01.005

    Article  CAS  Google Scholar 

  78. Elgueta E, Sánchez J, Dax D, Xu C, Willför S, Rivas BL, González M (2016) Functionalized galactoglucomannan-based hydrogels for the removal of metal cations from aqueous solutions. J Appl Polym Sci 133:44093. https://doi.org/10.1002/app.44093

    Article  CAS  Google Scholar 

  79. Zhang M, Li Y, Yang Q, Huang L, Chen L, Ni Y, Xiao H (2018) Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal. Carbohydr Polym 195:495–504. https://doi.org/10.1016/j.carbpol.2018.04.082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Department of Science & Technology (DST), Ministry of Science & Technology, New Delhi for providing instrumentation facility under DST-FIST scheme to DAV College, Jalandhar. One of the authors, Rajesh Kumar, acknowledges I.K Gujral Punjab Technical University, Kapurthala, Punjab for providing research support to him. Dr. Rajeev Kr. Sharma acknowledges UGC, New Delhi for sanctioning MRP no. F.8-4(92)/2015 (MRP/NRCB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kr. Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Sharma, R.K. & Singh, A.P. Synthesis and characterization of cellulose based graft copolymers with binary vinyl monomers for efficient removal of cationic dyes and Pb(II) ions. J Polym Res 26, 135 (2019). https://doi.org/10.1007/s10965-019-1790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1790-9

Keywords

Navigation