Skip to main content
Log in

Synthesis and characterization of novel ABA type poly(Ester-ether) triblock copolymers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Oligomers of poly(3-hydroxypropionate) (P3HP) were synthesized via hydrogen transfer polymerization of acrylic acid. Olefinic end-group of the oligomers were modified through epoxidation and bromination to obtain activated oligomers with epoxy and bromide end-groups, respectively. Terminally hydroxyl oligomeric poly(ethylene glycol) (PEG-1450) was also converted to sodium alkoxide of PEG-1450 through reaction with sodium hydride. Novel ABA type P3HP-b-PEG-b-P3HP triblock copolymers were successfully obtained through simple nucleophilic addition reactions between alkoxy and epoxy/alkyl bromide. Water uptake measurements of the triblock copolymers were calculated. Characterization of the modified oligomers and the triblock copolymers was performed by using FT-IR, 1H-NMR and MALDI-MS analyses. Thermal transitions and degradation features of the copolymers were investigated by using DSC and TGA methods. Spectroscopic and thermal analyses revealed that both end-group modifications and coupling reactions were successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Çatıker E, Meyvacı E, Atakay M, Salih B, Öztürk T (2018) Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by "click" chemistry. Polym Bull 76:2113–2128

    Article  Google Scholar 

  2. Öztürk T, Kılıçlıoğlu A, Savaş B, Hazer B (2018) Synthesis and characterization poly(ɛ-caprolactone-co-ethylene glycol) heteroarm star-type amphiphilic copolymers by "click" chemistry and ring-opening polymerization. J Macromol Sci Part A: Pure Appl Chem 55:588–594

    Article  Google Scholar 

  3. Öztürk T, Meyvacı E (2017) Synthesis and characterization poly(ɛ-caprolactone-b-ethylene glycol-b-ɛ-caprolactone) block copolymers via "click" chemistry and ring-opening polymerization. J Macromol Sci Part A: Pure Appl Chem 54:575–581

    Article  Google Scholar 

  4. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 31:1068–1132

    Article  CAS  Google Scholar 

  5. Öztürk T, Meyvacı E, Bektaş H, Menteşe E (2019) Synthesis and characterization of ring-type and branched polymers including polyethylene glycols by “click” chemistry. SN Applied Sciences 1:343

    Article  Google Scholar 

  6. Velichkova RS, Christova DC (1995) Amphiphilic polymers from macromonomers and telechelics. Prog Polym Sci 20:819–887

    Article  CAS  Google Scholar 

  7. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  8. Gacal B, Durmaz H, Tasdelen MA, Hizal G, Tunca U, Yagci Y, Demirel AL (2006) Anthracene-maleimide-based Diels-Alder "click chemistry" as a novel route to graft copolymers. Macromolecules 39:5330–5336

    Article  CAS  Google Scholar 

  9. Pispas S, Hadjichristidis N (2003) Aggregation behavior of poly(butadiene-b-ethylene oxide) block copolymers in dilute aqueous solutions: effect of concentration, temperature, ionic strength, and type of surfactant. Langmuir 19:48–54

    Article  CAS  Google Scholar 

  10. Öztürk T, Hazer B (2010) Synthesis and characterization of a novel macromonomer initiator for reversible addition fragmentation chain transfer (raft). Evaluation of the polymerization kinetics and gelation behaviors. J Polym Sci Part A Polym Chem 47:265–272

    Google Scholar 

  11. Öztürk T, Göktaş M, Hazer B (2011) Synthesis and characterization of poly(methyl methacrylate-block-ethylene glycol-block-methyl methacrylate) block copolymers by reversible addition fragmentation chain transfer polymerization. J Macromol Sci Part A: Pure Appl Chem 48:65–70

    Article  Google Scholar 

  12. Asan N, Öztürk T (2017) Synthesis and characterization of poly (vinyl chloride–graft–ethylene glycol) graft copolymers by "click" chemistry. Hacet J Biol Chem 45:35–42

    Google Scholar 

  13. Öztürk T, Ayyıldız H, Meyvacı E, Göktaş M (2017) Synthesis and characterization of poly (epichlorohydrin-graft-ethylene glycol) graft copolymers by "click" chemistry. Karaelmas Fen ve Mühendislik Dergisi 7:47–54

    Google Scholar 

  14. Xue Y, Ma D, Zhang T, Lin S, Shao S, Gu N (2014) Synthesis and characterization of comblike methoxy polyethylene glycol-grafted polyurethanes via ‘click’ chemistry. J Macromol Sci Part A: Pure Appl Chem 51:456–464

    Article  CAS  Google Scholar 

  15. Hazer B (2010) Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci 2010:423460

    Article  Google Scholar 

  16. Erciyes AT, Erim M, Hazer B, Yağcı Y (1992) Synthesis of polyacrylamide flocculants with poly(ethylene glycol) segments by redox polymerization. Angew Makromol Chem 200:163–171

    Article  CAS  Google Scholar 

  17. Öztürk T, Cavicchi CA (2018) Synthesis and characterization of poly(epichlorohydrin-g-ε-caprolactone) graft copolymers by "click" chemistry. J Polym Mater 35:209–220

    Article  Google Scholar 

  18. Göktaş M, Öztürk T, Atalar MN, Tekeş AT, Hazer B (2014) One-step synthesis of triblock copolymers via simultaneous reversible-addition fragmentation chain transfer (raft) and ring-opening polymerization using a novel difunctional macro-raft agent based on polyethylene glycol. J Macromol Sci Part A: Pure Appl Chem 51:854–863

    Article  Google Scholar 

  19. Öztürk T, Yavuz M, Göktaş M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513

    Article  Google Scholar 

  20. Öztürk T, Göktaş M, Savaş B, Işıklar M, Atalar MN, Hazer B (2014) Synthesis and characterization of poly (vinyl chloride-graft-2-vinylpyridine) graft copolymers using a novel macroinitiator by reversible addition-fragmentation chain transfer polymerization. E-polymers 14:27–34

    Article  Google Scholar 

  21. Öztürk T, Göktaş M, Hazer B (2010) One-step synthesis of triarm block copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization. J Appl Polym Sci 117:1638–1645

    Google Scholar 

  22. Altintas O, Tunca U, Barner-Kowollik C (2011) Star and miktoarm star block (co)polymers viaself-assembly of atrp generated polymer segments featuring Hamilton wedge and cyanuric acid binding motifs. Polym Chem 2:1146–1155

    Article  CAS  Google Scholar 

  23. Ruzette AV, Leibler L (2005) Block copolymers in tomorrow's plastics. Nat Mater 4:19–31

    Article  CAS  Google Scholar 

  24. Riess G, Hurtres G, Bahadur P (1985) Encyclopedia of polymer science and engineering. Wiley, New York

    Google Scholar 

  25. Clara I, Natchimuthu N (2016) Synthesis, characterization, and swelling behavior of hydrogels based on graft copolymerization of sodium-2-acrylamido-2-methyl-1-propane sulfonate onto gelatin. J Polym Mater 33:709–721

    CAS  Google Scholar 

  26. Öztürk T, Kayğın O, Göktaş M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization. J Macromol Sci Part A: Pure Appl Chem 53:362–367

    Article  Google Scholar 

  27. Şanal T, Oruç O, Öztürk T, Hazer B (2015) Synthesis of pH- and thermo-responsive poly(ɛ-caprolactone-b-4-vinyl benzyl-g-dimethyl amino ethyl methacrylate) brush type graft copolymers via raft polymerization. J Polym Res 22:1–12

    Article  Google Scholar 

  28. Öztürk T, Atalar MN, Göktaş M, Hazer B (2013) One-step synthesis of block-graft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator. J Polym Sci A Polym Chem 51:2651–2659

    Article  Google Scholar 

  29. Noshay A, Mcgrath JE (1977) Block copolymers: overview and critical survey. Academic Press, New York

    Google Scholar 

  30. Altıntas O, Tunca U (2011) Synthesis of terpolymers by click reactions. Chem Asian J 6:2584–2591

    Article  Google Scholar 

  31. Johnson JA, Lu YY, Burts AO, Xia Y, Durrell AC, Tirrell DA, Grubbs RH (2010) Drug-loaded, bivalent-bottle-brush polymers by graft-through romp. Macromolecules 43:10326–10335

    Article  CAS  Google Scholar 

  32. Johnson JA, Lu YY, Burts AO, Lim Y, Finn MG, Koberstein JT, Turro NJ, Tirrell DA, Grubbs RH (2011) Core-clickable peg-branch-azide bivalent-bottle-brush polymers by romp: grafting-through and clicking-to. J Am Chem Soc 133:559–566

    Article  CAS  Google Scholar 

  33. Zhang M, Estournès C, Bietsch W, Müller AHE (2004) Superparamagnetic hybrid nanocylinders. Adv Funct Mater 14:871–882

    Article  CAS  Google Scholar 

  34. Djalali R, Li S-Y, Schmidt M (2002) Amphipolar core−shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules 35:4282–4288

    Article  CAS  Google Scholar 

  35. Zhang M, Drechsler M, Muller AHE (2004) Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core−shell cylindrical polymer brushes. Chem Mater 16:537–543

    Article  CAS  Google Scholar 

  36. Li C, Gunari N, Fischer K, Janshoff A, Schmidt M (2004) New perspectives for the design of molecular actuators: thermally induced collapse of single macromolecules from cylindrical brushes to spheres. Angew Chem Int Ed 43:1101–1104

    Article  CAS  Google Scholar 

  37. Huang K, Rzayev J (2009) Well-defined organic nanotubes from multicomponent bottlebrush copolymers. J Am Chem Soc 131:6880–6885

    Article  CAS  Google Scholar 

  38. Cheng C, Qi K, Khoshdel E, Wooley KL (2006) Tandem synthesis of core−shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures. J Am Chem Soc 128:6808–6809

    Article  CAS  Google Scholar 

  39. Furuhashi Y, Iwata T, Kimura Y, Doi Y (2003) Structural characterization and enzymatic degradation of a-, b-, and g-crystalline forms for poly(b-propiolactone). Macromol Biosci 3:462–470

    Article  CAS  Google Scholar 

  40. Cortizo MS, Molinuevo MS, Cortizo AM (2008) Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering. J Tissue Eng Regen Med 2:33–42

    Article  CAS  Google Scholar 

  41. Cortizo MS, Alessandrini JL, Etcheverr SB, Cortizo AM (2001) A vanadium/aspirin complex controlled release using a poly(beta-propiolactone) film. Effects on osteosarcoma cells. J Biomater Sci Polym Ed 12:945–959

    Article  CAS  Google Scholar 

  42. Tasaka S, Kawaguchi M, Inagaki N (1998) Ferroelectric behavior in poly(beta-propiolactone). Eur Polym J 34:1743–1745

    Article  CAS  Google Scholar 

  43. Zhang D, Hillmyer MA, Tolman WB (2004) A new synthetic route to poly[3-hydroxypropionic acid] (P[3-HP]): ring-opening polymerization of 3-HP macrocyclic esters. Macromolecules 37:8198–8200

    Article  CAS  Google Scholar 

  44. Andreessen B, Lange AB, Robenek H, Steinbuchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant escherichia coli. Appl Environ Microbiol 76:622–626

    Article  CAS  Google Scholar 

  45. Suehiro K, Chatani Y, Tadokoro H (1975) Structural studies of polyesters. VI. Disordered crystal structure (form II) of poly(β-propiolactone). Polym J 7:352–358

    Article  CAS  Google Scholar 

  46. Kricheldorf HR, Scharnagl N (1996) Polylactones 33. The role of deprotonation in the anionic polymerization of β-propiolactone. Polymer 37:1405–1411

    Article  CAS  Google Scholar 

  47. Ohnishi S, Sugimoto S, Hayashi K, Nitta I (1964) The Anisotropy of the ESR Spectrum of Irradiated Poly(β-propiolactone). Bull Chem Soc Jpn 37:524–527

    Article  CAS  Google Scholar 

  48. Watanabe M, Togo M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z (1984) Ionic conductivity of polymer complexes formed by poly(/3-propiolactone) and lithium perchlorate. Macromolecules 17:2908–2912

    Article  CAS  Google Scholar 

  49. Evstropov AA, Lebedev BV, Kulagina TG, Lyudvig EB, Belen’kaya BG (1979) The thermodynamic properties of β-propiolactone, its polymer, and its polymerization in the 0–400 °K range. Polymer Science USSR 21:2249–2256

    Article  Google Scholar 

  50. Rosenoasser D, Casas AS, Figini RV (1982) Thermodynamic and hydrodynamic properties of aliphatic polyesters, 1. Solubility, intrinsic viscosity, and molecular weight of poly(β-propiolactone). Macromol Chem Phys 183:3067–3073

    Article  Google Scholar 

  51. Suzuki Y, Taguchi S, Hisano T, Toshima K, Matsumura S, Doi Y (2003) Correlation between structure of the lactones and substrate specificity in enzyme-catalyzed polymerization for the synthesis of polyesters. Biomacromolecules 4:537–543

    Article  CAS  Google Scholar 

  52. Nobes GAR, Kazlauskas RJ, Marchessault RH (1996) Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly(hydroxyalkanoate)s. Macromolecules 29:4829–4833

    Article  CAS  Google Scholar 

  53. Breslow DS, Hulse GE, Matlack AS (1957) Synthesis of poly-β-alanine from acrylamide. a novel synthesis of β-alanine. J Am Chem Soc 79:3760–3763

    Article  CAS  Google Scholar 

  54. Saegusa T, Kobayashi S, Kimura Y (1974) Hydrogen-transfer polymerization of acrylic acid to poly(β-propiolactone). Macromolecules 7:256–258

    Article  Google Scholar 

  55. Yamada B, Yasuda Y, Matsushita T, Otsu V (1976) Preparation of polyester from acrylic acid in the presence of crown ether. J Polym Sci Part C: Polym Lett 14:277–281

    CAS  Google Scholar 

  56. Çatıker E, Güven O, Salih B (2018) Novel hydrophobic macromonomers for potential amphiphilic block copolymers. Polym Bull 75:47–60

    Article  Google Scholar 

  57. Mukbaniani, O.V., Tatrishvili, T.N., & Abadie, M.J.M. (2019). Science and technology of polymers and advanced materials. Applied research methods. Apple academic press, CRC press, Taylor & Francis Group, 1st edition

  58. Balcı M, Allı A, Hazer B, Güven O, Cavicchi K, Cakmak M (2010) Synthesis and characterization of novel comb-type amphiphilic graft copolymers containing polypropylene and polyethylene glycol. Polym Bull 64:691–705

    Article  Google Scholar 

  59. Hmamouchi M, Prudhomme RE (1988) Synthesis and polymerization of racemic and optically active substituted ß-propiolactones. v. α-methyl ß-propiolactone. J Polym Sci A Polym Chem 26:1593–1607

    Article  CAS  Google Scholar 

  60. Park WH, Lenz RW, Goodwin S (1998) Epoxidation of bacterial polyesters with unsaturated side chains. i. Production and epoxidation of polyesters from 10-undecenoic acid. Macromolecules 31:1480–1486

    Article  CAS  Google Scholar 

  61. Erduranlı H, Hazer B, Borcaklı M (2008) Post polymerization of saturated and unsaturated poly(3-hydroxy alkanoate)s. Macromol Symp 269:161–169

    Article  Google Scholar 

  62. Andreessen B, Taylor N, Steinbüchel A (2014) Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Appl Environ Microbiol 80:6574–6582

    Article  Google Scholar 

  63. Törmälä P (1974) Determination of glass transition temperature of poly(ethylene glycol) by spin probe technique. Eur Polym J 10:519–521

    Article  Google Scholar 

  64. Şanal T, Koçak İ, Hazer B (2017) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ε-caprolactone) via click reaction. Polym Bull 74:977–995

    Article  Google Scholar 

  65. Imanishi, Y. 1996. Editors-in-chief: Allen, G., and Bevington, J.C. in ";Comperansive polymer science and supplements", Carbanionic polymerization: hydrogen migration polymerization. Pergamon, Elsevier, pp.451-455

Download references

Funding

This work was supported by Ordu University Scientific Research Fund (grand number: ODU-BAP HD-1606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temel Öztürk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çatıker, E., Öztürk, T., Atakay, M. et al. Synthesis and characterization of novel ABA type poly(Ester-ether) triblock copolymers. J Polym Res 26, 123 (2019). https://doi.org/10.1007/s10965-019-1778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1778-5

Keywords

Navigation