Skip to main content

Advertisement

Log in

Statistical copolymerization of N-vinyl-pyrrolidone and alkyl methacrylates via RAFT: reactivity ratios and thermal analysis

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The synthesis of statistical copolymers of N-vinylpyrrolidone (NVP) with the alkyl methacrylates: hexyl methacrylate (HMA) and stearyl methacrylate (SMA), is conducted by reversible addition-fragmentation chain transfer polymerization (RAFT), employing [(O-ethylxanthyl) methyl]benzene and [1-(O-ethylxanthyl) ethyl]benzene as the RAFT agents. The reactivity ratios are estimated using the Fineman-Ross, inverted Fineman-Ross, Kelen-Tudos and Barson-Fenn graphical methods as well as the computer program COPOINT, modified to both the terminal and the penultimate model. In all cases, the NVP reactivity ratio is significantly lower than that of the methacrylates. Structural parameters of the copolymers are obtained by calculating the dyad and triad sequence fractions and the mean sequence length. The thermal properties of the copolymers are studied by Differential Scanning Calorimetry and Thermogravimetric Analysis, and the results are compared with those of the respective homopolymers. In spite of the relatively small amount of NVP in the copolymers, copolymer thermal properties are influenced by both monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perrier S (2017) 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 50(19):7433–7447

    Article  CAS  Google Scholar 

  2. Martin L, Gody G, Perrier S (2015) Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polym Chem 6(27):4875–4886

    Article  CAS  Google Scholar 

  3. Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S (2009) Bioapplications of RAFT Polymerization. Chem Rev 109(11):5402–5436

    Article  CAS  Google Scholar 

  4. Roth PJ, Boyer C, Lowe AB, Davis TP (2011) RAFT Polymerization and Thiol Chemistry: A Complementary Pairing for Implementing Modern Macromolecular Design. Macromol Rapid Commun 32(15):1123–1143

    Article  CAS  Google Scholar 

  5. Skandalis A, Pispas S (2017) PDMAEMA-b-PLMA-b-POEGMA triblock terpolymers via RAFT polymerization and their self-assembly in aqueous solutions. Polym Chem 8(31):4538–4547

    Article  CAS  Google Scholar 

  6. Awasthi R, Manchanda S, Das P, Velu V, Malipeddi H, Pabreja K, Pinto T, Gupta G, Dua K (2018) In: Parambath A (ed) Engineering of Biomaterials for Drug Delivery Systems chap. 9 - Poly(vinylpyrrolidone), Woodhead Publishing

  7. Baraker BM, Lobo B (2017) Dispersion parameters of cadmium chloride doped PVA-PVP blend films. J Polym Res 24:84

    Article  Google Scholar 

  8. Karatzas A, Bilalis P, Iatrou H, Pitsikalis M, Hadjichristidis N (2009) Synthesis of well-defined functional macromolecular chimeras based on poly(ethylene oxide) or poly(N-vinyl pyrrolidone). React Funct Polym 69:435–440

    Article  CAS  Google Scholar 

  9. Bilalis P, Pitsikalis M, Hadjichristidis N (2006) Controlled nitroxide-mediated and reversible addition-fragmentation chain transfer polymerization ofN-vinylpyrrolidone: Synthesis of block copolymers with styrene and 2-vinylpyridine. J Polym Sci, Part A: Polym Chem Ed 44:659–665

    Article  CAS  Google Scholar 

  10. Bilalis P, Zorba G, Pitsikalis M, Hadjichristidis N (2006) Synthesis of poly(n-hexyl isocyanate-b-N-vinylpyrrolidone) block copolymers by the combination of anionic and nitroxide-mediated radical polymerizations: Micellization properties in aqueous solutions. J Polym Sci, Part A: Polym Chem Ed 44:5719–5728

    Article  CAS  Google Scholar 

  11. Ngadaonye JI, Cloonan MO, Geever LM, Higginbotham CL (2011) Synthesis and characterisation of thermo-sensitive terpolymer hydrogels for drug delivery applications. J Polym Res 18:2307–2324

    Article  CAS  Google Scholar 

  12. Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res 16:1–10

    Article  CAS  Google Scholar 

  13. Julinová M, Kupec J, Slavík R, Vaskova M (2012) Proceedings of ECOpole, vol 6, pp 121–127

    Google Scholar 

  14. Huma F, Akhter Z, Zafar-Uz-Zaman M, Yasin T (2013) Release of dexamethasone from poly(N-vinyl pyrrolidone-co-n-hexyl methacrylate) copolymers of controlled hydrophilicity. J Appl Polym Sci 128(1):444–450

    Article  CAS  Google Scholar 

  15. Nielsen BV, Nevell TG, Barbu E, Smith JR, Rees GD, Tsibouklis J (2011) Multifunctional poly(alkyl methacrylate) films for dental care. Biomed Mater 6:015003

    Article  Google Scholar 

  16. Seymour BT, Wright RA, Parrott AC, Gao H, Martini A, Qu J, Zhao B (2017) Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property. ACS Appl Mater Interfaces 9(29):25038–25048

    Article  CAS  Google Scholar 

  17. Huo M, Xu Z, Zeng M, Chen P, Liu L, Yan LT, Wei Y, Yuan J (2017) Controlling Vesicular Size via Topological Engineering of Amphiphilic Polymer in Polymerization-Induced Self-Assembly. Macromolecules 50(24):9750–9759

    Article  CAS  Google Scholar 

  18. Zhang D, Zhang Q, Bai L, Han D, Liu H, Yan H (2018) Fabrication of an ionic-liquid-based polymer monolithic column and its application in the fractionation of proteins from complex biosamples. J Sep Sci 41:1923–1929

    Article  CAS  Google Scholar 

  19. Yuan X, Li W, Zhu Z, Han N, Zhang X (2017) Thermo-responsive PVDF/PSMA composite membranes with micro/nanoscale hierarchical structures for oil/water emulsion separation. Colloid Surface A 516:305–316

    Article  CAS  Google Scholar 

  20. Zouganelis S, Kanisoglou I, Kabaki C, Pitsikalis M (2016). IJARCS 3(11):14–31

    Google Scholar 

  21. Makrikosta G, Georgas D, Siakali-Kioulafa E, Pitsikalis M (2005) Statistical copolymers of styrene and 2-vinylpyridine with trimethylsilyl methacrylate and trimethylsilyloxyethyl methacrylate. Eur Polym J 41:47–54

    Article  CAS  Google Scholar 

  22. Kostakis K, Mourmouris S, Kotakis K, Nikogeorgos N, Pitsikalis M, Hadjichristidis N. J Polym Sci, Part A: Polym Chem Ed 43:3305–3314

  23. Kotzabasakis V, Petzetakis N, Pitsikalis M, Hadjichristidis N, Lohse DJ (2009) Copolymerization of tetradecene-1 and octene-1 with silyl-protected 10-undecen-1-ol using a Cs-symmetry hafnium metallocene catalyst. A route to functionalized poly(α-olefins). J Polym Sci, Part A: Polym Chem Ed 47:876–886

    Article  CAS  Google Scholar 

  24. Driva P, Bexis P, Pitsikalis M (2011) Radical copolymerization of 2-vinyl pyridine and oligo(ethylene glycol) methyl ether methacrylates: Monomer reactivity ratios and thermal properties. Eur Polym J 47:762–771

    Article  CAS  Google Scholar 

  25. Droulia M, Anastasaki A, Rokotas A, Pitsikalis M, Paraskevopoulou P (2011) Statistical copolymers of methyl methacrylate and 2-methacryloyloxyethyl ferrocenecarboxylate: Monomer reactivity ratios, thermal and electrochemical properties. J Polym Sci, Part A: Polym Chem Ed 49:3080–3089

    Article  CAS  Google Scholar 

  26. Floros G, Agrafioti F, Grigoropoulos A, Paraskevopoulou P, Mertis K, Tseklima M, Veli M, Pitsikalis M (2013) Statistical copolymers of norbornene and 5-vinyl-2-norbornene by a ditungsten complex mediated ring-opening metathesis Polymerization: Synthesis, thermal properties, and kinetics of thermal decomposition. J Polym Sci, Part A: Polym Chem Ed 51:4835–4844

    Article  CAS  Google Scholar 

  27. Karra E, Petrakou I, Driva P, Pitsikalis M (2013). MMAIJ 9:68–77

    CAS  Google Scholar 

  28. Nikovia C, Maroudas A, Goulis P, Tzimis D, Paraskevopoulou P, Pitsikalis M (2015) Statistical Ring Opening Metathesis Copolymerization of Norbornene and Cyclopentene by Grubbs’ 1st-Generation Catalyst. Molecules 20:15597–15615

    Article  CAS  Google Scholar 

  29. Kanellou A, Spilioti A, Theodosopoulos GV, Choinopoulos I, Pitsikalis M (2015). J Org Inorg Chem 1:1–11

    Google Scholar 

  30. Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) Anionic polymerization: High vacuum techniques. J Polym Sci, Part A: Polym Chem Ed 38:3211–3234

    Article  CAS  Google Scholar 

  31. Wan D, Satoh K, Kamigaito M, Okamoto Y (2005) Xanthate-Mediated Radical Polymerization ofN-Vinylpyrrolidone in Fluoroalcohols for Simultaneous Control of Molecular Weight and Tacticity. Macromolecules 38:10397–10405

    Article  CAS  Google Scholar 

  32. Uhrig D, Mays JW (2005) Experimental techniques in high-vacuum anionic polymerization. J Polym Sci, Part A: Polym Chem Ed 43(24):6179–6222

    Article  CAS  Google Scholar 

  33. Roka N, Kokkorogianni O, Pitsikalis M (2017) Statistical copolymers ofN-vinylpyrrolidone and 2-(dimethylamino)ethyl methacrylate via RAFT: Monomer reactivity ratios, thermal properties, and kinetics of thermal decomposition. J Polym Sci Polym Chem 55(22):3776–3787

    Article  CAS  Google Scholar 

  34. Roka N, Pitsikalis M (2018) Statistical copolymers of N-vinylpyrrolidone and benzyl methacrylate via RAFT: Monomer reactivity ratios, thermal properties and kinetics of thermal decomposition. J Macromol Sci A 55(3):222–230

    Article  CAS  Google Scholar 

  35. Moad G, Rizzardo E, Thang SH (2012) Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 65(8):985–1076

    Article  CAS  Google Scholar 

  36. Fineman M, Ross SD (1950) Linear method for determining monomer reactivity ratios in copolymerization. Journal of Macromolecular Science: Part A – Chemistry 5:259–262

    CAS  Google Scholar 

  37. Kelen T, Tüdos F (1975) Analysis of the Linear Methods for Determining Copolymerization Reactivity Ratios. I. A New Improved Linear Graphic Method. J Macromol Sci – Chem 9:1–27

    Article  Google Scholar 

  38. Beginn U (2005). e-Polymers 5:759–773

    Google Scholar 

  39. Odian G (2004) Principles of polymerization. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  40. Touchal S, Jonquières A, Clément R, Lochon P (2004) Copolymerization of 1-vinylpyrrolidone with N-substituted methacrylamides: monomer reactivity ratios and copolymer sequence distribution. Polymer 45:8311–8322

    Article  CAS  Google Scholar 

  41. Vijay Kumar S, Musturappa TE, Prasannakumar S, Mahadevan KM, Sherigara BS (2007) N‐Vinylpyrrolidone and Ethoxyethyl Methacrylate Copolymer: Synthesis, Characterization and Reactivity Ratios. J Macromol Sci A 44:1161–1169

    Article  Google Scholar 

  42. Vijay Kumar S, Prasannakumar S, Sherigara BS, Redddy BSR, Aminabhavi TM (2008) N-vinylpyrrolidone and 4-vinyl Benzylchloride Copolymers: Synthesis, Characterization and Reactivity Ratios. J Macromol Sci A 45:821–827

    Article  Google Scholar 

  43. Tripathi A, Srivastava AK (2008) Studies on the radical polymerization of N-vinyl 2-pyrrolidone initiated by diphenyl ditelluride. J Polym Res 15:187–193

    Article  CAS  Google Scholar 

  44. Hagiopol C (2012) Copolymerization: toward a systematic approach. Springer Science & Business Media

  45. Igarashi S (1963) Representation of composition and blockiness of the copolymer by a triangular coordinate system. Journal of Polymer Science Part B: Polymer Letters 1:359–363

    Article  Google Scholar 

  46. Elias HG (1984) Macromolecules. Vol 2: synthesis, materials, and technology. Springer, New York

    Book  Google Scholar 

  47. Devasia R, Nair CR, Ninan KN (2002) Polyacrylonitrile precursors for carbon fiber with imidocarbox ylic acid units: copolymerization of acrylonitrile with maleimidobenzoic acid. J Macromol Sci A 39(7):693–708

    Article  Google Scholar 

  48. Barson CA, Fenn DR (1987) A method for determining reactivity ratios whenn copolymerizations are influenced by penultimate group effects. Eur Polym J 23(11):833–834

    Article  CAS  Google Scholar 

  49. Turner DT, Schwartz A (1985) The glass transition temperature of poly(N-vinyl pyrrolidone) by differential scanning calorimetry. Polymer 26:757–762

    Article  CAS  Google Scholar 

  50. Brown ME (ed) (2001) In: introduction to thermal analysis. Techniques and applications2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  51. Hatakeyama T, Quinn FX (1999) In: Thermal analysis. Fundamentals and applications to polymer science, 2nd edn. John Wiley & Sons, Chichester, England

  52. Hourston DJ, Song M, Hammiche A, Pollock HM, Reading M (1997) Modulated differential scanning calorimetry: 6. Thermal characterization of multicomponent polymers and interfaces. Polymer 38:1–7

    Article  CAS  Google Scholar 

  53. Karanikolopoulos G, Batis C, Pitsikalis M, Hadjichristidis N (2001) On the Polymerization of Alkyl Methacrylates with the Achiral Dimethylzirconocene Precursor Cp2ZrMe2. Macromolecules 34(14):4697–4705

    Article  CAS  Google Scholar 

  54. Karanikolopoulos G, Batis C, Pitsikalis M, Hadjichristidis N (2003) The Influence of the Nature of the Catalytic System on Zirconocene-Catalyzed Polymerization of Alkyl Methacrylates. Macromol Chem Phys 204:831–840

    Article  CAS  Google Scholar 

  55. Stergiou G, Dousikos P, Pitsikalis M (2002) Radical copolymerization of styrene and alkyl methacrylates: monomer reactivity ratios and thermal properties. Eur Polym J 38(10):1963–1970

    Article  CAS  Google Scholar 

  56. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43:3873–3878

    Article  CAS  Google Scholar 

  57. Loría-Bastarrachea MI, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Vázquez-Torres H, Ávila-Ortega A (2011) A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J Therm Anal Calorim 104:737–742

    Article  Google Scholar 

Download references

Acknowledgments

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinos Pitsikalis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3822 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsoni, E., Roka, N. & Pitsikalis, M. Statistical copolymerization of N-vinyl-pyrrolidone and alkyl methacrylates via RAFT: reactivity ratios and thermal analysis. J Polym Res 26, 118 (2019). https://doi.org/10.1007/s10965-019-1776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1776-7

Keywords

Navigation