Skip to main content

Advertisement

Log in

Promotion of zeolite as dispersion support for properties improvement of α nucleating agent in polypropylene

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effects of a combined system consisting of zeolite13X (Z13X) and the α nucleating agent sodium 2,2′-methylene-bis(4,6-di-tertbutylphenyl)-phosphate (NA-11) on the mechanical and crystallization properties of polypropylene (iPP) were studied in detail. The results show that the addition of Z13X to iPP/NA-11 not only increases the mechanical properties of iPP, but also accelerates its crystallization. In particular, at a weight ratio of 4:6 NA-11/Z13X and at a total amount of 0.2 wt%, the tensile strength and flexural modulus of iPP/NA-11/Z13X reach 37.9 MPa and 1896 MPa, respectively, and the crystallization temperature of the iPP/NA-11/Z13X system is 130.2 °C. Furthermore, a comparison of POM and mapping photographs of iPP/NA-11/Z13X and iPP/NA-11 indicate that the presence of Z13X increases the dispersion of NA-11 via hydrogen bonding (as evidenced by FT-IR) and accelerates the crystallization rate. The combined system consisting of Z13X and NA-11, with a lower concentration of NA-11(0.08 wt%), exhibits a similar crystallization ability compared to that of only NA-11 (0.2 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Y, Pan C, Xin Z, Zhou S, Meng X, Zhao S (2018) Rheological, crystallization and foaming behaviors of high melt strength polypropylene in the presence of polyvinyl acetate. J Polym Res 25(2):46

    Article  CAS  Google Scholar 

  2. Chen Y, Chen Q, Lv Y, Huang Y, Yang Q, Liao X (2015) Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods. J Polym Res 22(6):1–11

    Article  Google Scholar 

  3. Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M (2001) Modeling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer 42(7):3171–3182

    Article  CAS  Google Scholar 

  4. Drongelen MV, Erp TBV, Peters GWM (2012) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer 53(21):4758–4769

    Article  Google Scholar 

  5. Ning N, Zhang W, Yan J, Xu F, Wang T, Su H, Tang C, Fu Q (2013) Largely enhanced crystallization of semi-crystalline polymer on the surface of glass fiber by using graphene oxide as a modifier. Polymer 54(1):303–309

    Article  CAS  Google Scholar 

  6. Wang L, Hikima Y, Ishihara S, Ohshima M (2017) Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents. Polymer 128:119–127. https://doi.org/10.1016/j.polymer.2017.09.025

    Article  CAS  Google Scholar 

  7. Arvidson SA, Khan SA, Gorga RE (2010) Mesomorphic−α-monoclinic phase transition in isotactic polypropylene: a study of processing effects on structure and mechanical properties. Macromolecules 43(6):2916–2924

    Article  CAS  Google Scholar 

  8. Zhang YF, Li X, Wei XS (2010) Non-isothermal crystallization kinetics of isotactic polypropylene nucleated with 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol. J Therm Anal Calorim 100(2):661–665

    Article  CAS  Google Scholar 

  9. Nam GJ, Yoo JH, Lee JW (2010) Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. J Appl Polym Sci 96(5):1793–1800

    Article  Google Scholar 

  10. Zheng Q, Shangguan Y, Tong L, Mao P (2010) Effect of vibration on crystal morphology and structure of isotactic polypropylene in nonisothermal crystallization. J Appl Polym Sci 94(5):2187–2195

    Article  Google Scholar 

  11. Zhao W, Huang Y, Liao X, Yang Q (2013) The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties. Polymer 54(4):1455–1462. https://doi.org/10.1016/j.polymer.2012.12.073

    Article  CAS  Google Scholar 

  12. Kitade S, Kurihara H, Asuka K, Katsuno S, Akiba I, Sakurai K (2017) Oriented crystallization of long chain branched polypropylene induced by step-shear deformation in pre-crystallization regime. Polymer 116:395–402. https://doi.org/10.1016/j.polymer.2017.02.005

    Article  CAS  Google Scholar 

  13. Hou W-M, Liu G, Zhou J-J, Gao X, Li Y, Li L, Zheng S, Xin Z, Zhao L-Q (2006) The influence of crystal structures of nucleating agents on the crystallization behaviors of isotactic polypropylene. Colloid Polym Sci 285(1):11–17. https://doi.org/10.1007/s00396-006-1475-x

    Article  CAS  Google Scholar 

  14. Tang J, Wang Y, Liu H, Belfiore LA (2004) Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45(7):2081–2091

    Article  CAS  Google Scholar 

  15. Castillo LA, Barbosa SE, Capiati NJ (2012) Influence of talc genesis and particle surface on the crystallization kinetics of polypropylene/talc composites. J Appl Polym Sci 126(5):1763–1772

    Article  CAS  Google Scholar 

  16. Li Y, Yao Z, Chen Z-h, Qiu S-l, Zeng C, Cao K (2015) High melt strength polypropylene by ionic modification: preparation, rheological properties and foaming behaviors. Polymer 70:207–214. https://doi.org/10.1016/j.polymer.2015.06.032

    Article  CAS  Google Scholar 

  17. Zhang X, Zhang D, Liu T (2012) Influence of nucleating agent on properties of isotactic polypropylene. Energy Procedia 17(8):1829–1835

    Article  CAS  Google Scholar 

  18. Zhao S, Zhong X, Jing Z, Han T (2012) Combined effect of organic phosphate sodium and nanoclay on the mechanical properties and crystallization behavior of isotactic polypropylene. J Appl Polym Sci 123(1):617–626

    Article  CAS  Google Scholar 

  19. Long L, He W, Zhang M, Zhang K, Qin S, Yu J (2015) Nucleation effects of sodium and ammonium salts of 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate in isotactic polypropylene. Polym Eng Sci 55(1):22–28

    Article  Google Scholar 

  20. Rungswang W, Thongsak K, Prasansuklarb A, Plailahan K, Saendee P, Rugmai S, Cheevasrirungruang W (2014) Effects of sodium salt and sorbitol-derivative nucleating agents on physical properties related to crystal structure and orientation of polypropylene. Ind Eng Chem Res 53(6):2331–2339

    Article  CAS  Google Scholar 

  21. Kilic A, Shim E, Yeom BY, Pourdeyhimi B (2013) Effect of DMDBS (3 : 2, 4-bis(3,4-dimethyldibenzylidene) sorbitol) and NA-11 (sodium 2,2′-methylene-bis(4,6-di-tertbutylphenyl)-phosphate) on electret properties of polypropylene filaments. J Appl Polym Sci 130(3):2068–2075

    Article  CAS  Google Scholar 

  22. Patil N, Invigorito C, Gahleitner M, Rastogi S (2013) Influence of a particulate nucleating agent on the quiescent and flow-induced crystallization of isotactic polypropylene. Polymer 54(21):5883–5891

    Article  CAS  Google Scholar 

  23. Guo M, Zhang Y, Li J, Pan G, Yan H, Luo Y, Liu Y (2014) Ultrafine dispersion of a phosphate nucleating agent in a polypropylene matrix via the microemulsion method. RSC Adv 4(23):11931–11938

    Article  CAS  Google Scholar 

  24. Jang GS, Cho WJ, Ha CS (2001) Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J Polym Sci B Polym Phys 39(10):1001–1016

    Article  CAS  Google Scholar 

  25. Qiu F, Wang M, Hao Y, Guo S (2014) The effect of talc orientation and transcrystallization on mechanical properties and thermal stability of the polypropylene/talc composites. Compos A: Appl Sci Manuf 58(58):7–15

    Article  CAS  Google Scholar 

  26. Lv Z, Hu C, Xue J, Tao D (2010) Effect of zeolite 5A on the crystalline behavior of polypropylene (PP) in PP/β-nucleating agent system. Polym Compos 29(12):1291–1296

    Article  Google Scholar 

  27. Jiang J, Li G, Tan N, Ding Q, Mai K (2012) Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator. Thermochim Acta 546(546):127–133

    Article  CAS  Google Scholar 

  28. Lv Z, Wang K, Qiao Z, Wang W (2010) The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene. Mater Des 31(8):3804–3809

    Article  CAS  Google Scholar 

  29. Jiang J, Li G, Liu H, Ding Q, Mai K (2013) Preparation and β-crystallization of zeolite filled isotactic polypropylene composites. Compos A: Appl Sci Manuf 45:88–94

    Article  CAS  Google Scholar 

  30. Ren Y, Guo J, Zhang Q, Zou H, Qu C, Chu L (2016) Effect of TMB-5 on dispersion of MWCNTs in iPP and crystallization of β-nucleated iPP/MWCNTs composites. J Polym Res 23(7):127

    Article  Google Scholar 

  31. Long L, He W, Li J, Xiang Y, Qin S, Yu J (2016) Joint effects of molecular structure and crystal morphology of organophosphate monovalent salts on nucleated isotactic poly(propylene). J Polym Res 23(10):206

    Article  Google Scholar 

  32. Roy S, Scionti V, Jana S, Wesdemiotis C, Pischera A, Espe M (2011) Sorbitol–POSS interactions on development of isotactic polypropylene composites. Macromolecules 44(20):8064–8079

    Article  CAS  Google Scholar 

  33. Feng B, Li Z, Chen G, Zhu K, Zhao Y, Yuan X (2017) Improving crystallization behaviors of isotactic polypropylene via a new POSS-sorbitol compound. Polym Eng Sci 57(4):357–364

    Article  CAS  Google Scholar 

  34. Dobrzyńska-Mizera M, Dutkiewicz M, Sterzyński T, Lorenzo M (2016) Isotactic polypropylene modified with sorbitol-based derivative and siloxane-silsesquioxane resin. Eur Polym J 85:62–71

    Article  Google Scholar 

  35. Modro A, Modro T (2002) The phosphoryl and the carbonyl group as hydrogen bond acceptors. Phosphorus Sulfur Silicon Relat Elem 177(8–9):2067

    Article  CAS  Google Scholar 

  36. Aksnes G, Gramstad T, Larsson L, Dodson R (1960) Intermolecular hydrogen bond association between phenol and compounds which contain the phosphoryl and carbonyl groups. Acta Chem Scand 14:1475–1484

    Article  CAS  Google Scholar 

  37. Shi S, Yang C, Nie M (2017) Enhanced interfacial strength of natural fiber/polypropylene composite with mechanical-interlocking interface. ACS Sustain Chem Eng

  38. Hu D, Wang G, Feng J, Lu X (2016) Exploring supramolecular self-assembly of a bisamide nucleating agent in polypropylene melt: the roles of hydrogen bond and molecular conformation. Polymer 93:123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support provided by the National Natural Science Funds of China (Grant No. 21776079), and the financial support of the Ministry of Science and Technology of the People’s Republic of China (The People’s Republic of China 863 Program [Grant No. 2015AA034003]). The authors thank Research Center of Analysis and Test of East China University of Science and Technology for the help on the characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Meng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Tong, C., Xin, Z. et al. Promotion of zeolite as dispersion support for properties improvement of α nucleating agent in polypropylene. J Polym Res 26, 105 (2019). https://doi.org/10.1007/s10965-019-1757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1757-x

Keywords

Navigation