Investigation of mercaptan/ε-caprolactam initiated bulk copolymerization of methyl methacrylate with vinyl monomers

  • Chien-Pang Wu
  • Cheng-Chien Wang
  • Chuh-Yung ChenEmail author


The bulk copolymerization of methyl methacrylate (MMA) with vinyl monomers initiated by ε-caprolactam (CL) and n-dodecyl mercaptan (RSH) was investigated. Acrylonitrile (AN) and vinyl acetate (VAc) were used to copolymerize with MMA at 90 °C in the presence of CL and RSH, respectively. As evidenced by first-order kinetics of polymerization, linear increase of molecular weights with monomer conversions, and relatively low PDI values within a range of 1.3 to 1.6, both the copolymerization reactions exhibited living characteristics. Dependences of the copolymerization on the monomer feed ratio was also studied. An increase in the feed ratio of MMA induced an increased rate of copolymerization. In contrast, an increase in the initial loading of vinyl monomer leaded to the decrease in rate of copolymerization. The reactivity ratios of each pair of comonomers were also assessed using Fineman-Ross (FR) method. The results showed that the CL has an important influence on the kinetics of copolymerization, which caused the copolymerization parameters different from the most previously reported values.


Copolymerization Living polymerization Vinyl monomer Kinetic 



The financial support of the Ministry of Science and Technology of the Republic of China (MOST 106-2218-E-006 -022 -) are gratefully acknowledged. The authors are grateful to Ms. P.Y. Lin for her crucial contribution to the 1H NMR experiments.


  1. 1.
    Lin Y, Zheng J, Yao K, Tan H, Zhang G, Gong J, Tang T, Xu D (2015) Synthesis and linear rheological property of comb-like styrene-based polymers with a high degree of branch chain. Polymer 59(0):252–259CrossRefGoogle Scholar
  2. 2.
    Zhang H, Alkayal N, Gnanou Y, Hadjichristidis NP (2014). Macromol Rapid Commun 35(4):378–390CrossRefGoogle Scholar
  3. 3.
    Yilgör E, Yilgör I (2014) Silicone containing copolymers: Synthesis, properties and applications. Prog Polym Sci 39(6):1165–1195CrossRefGoogle Scholar
  4. 4.
    Ito S, Goseki R, Ishizone T, Hirao A (2014) Synthesis of well-controlled graft polymers by living anionic polymerization towards exact graft polymers. Polym Chem 5(19):5523–5534CrossRefGoogle Scholar
  5. 5.
    Hardy CG, Zhang J, Yan Y, Ren L, Tang C (2014) Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Prog Polym Sci 39(10):1742–1796CrossRefGoogle Scholar
  6. 6.
    Zhang W, Müller AHE (2012). Prog Polym Sci 38(8):1121–1162CrossRefGoogle Scholar
  7. 7.
    Moad G, Keddie D, Guerrero-Sanchez C, Rizzardo E, Thang SH (2015) Advances in Switchable RAFT Polymerization. Macromol Symp 350(1):34–42CrossRefGoogle Scholar
  8. 8.
    Ma J, Zhang H (2015) Kinetic investigations of RAFT polymerization: Difunctional RAFT agent mediated polymerization of methyl methacrylate and styrene. Macromol Res 23(1):67–73CrossRefGoogle Scholar
  9. 9.
    Cheng H, Zhao G, Yan D (1992). J Polym Sci A: Polym Chem 30(10):2181–2185CrossRefGoogle Scholar
  10. 10.
    Hu YH, Chen CY (2002). J Polym Sci A: Polym Chem 40(21):3692–3702CrossRefGoogle Scholar
  11. 11.
    Hu YH, Chen CY (2003) The effect of end groups on the thermal degradation of poly(methyl methacrylate). Polym Degrad Stab 82(1):81–88CrossRefGoogle Scholar
  12. 12.
    Hu YH, Chen CY (2003) Study of the thermal behaviour of poly(methyl methacrylate) initiated by lactams and thiols. Polym Degrad Stab 80(1):1–10CrossRefGoogle Scholar
  13. 13.
    Hu YH, Chen CY, Wang CC (2004) Thermal degradation kinetics of poly(n-butyl acrylate) initiated by lactams and thiols. Polym Degrad Stab 84(3):505–514CrossRefGoogle Scholar
  14. 14.
    Hu YH, Chen CY, Wang CC, Huang YH, Wang SP (2004). J Polym Sci A: Polym Chem 42(19):4976–4993CrossRefGoogle Scholar
  15. 15.
    Bach LG, Islam MR, Gal YS, Lim KT (2012) Synthesis and Characterization of TiO2/Poly(methyl methacrylate) Nanocomposites via Surface Thiol-Lactam Initiated Radical Polymerization. J Nanosci Nanotechnol 12(7):5976–5980CrossRefGoogle Scholar
  16. 16.
    Bach LG, Islam MR, Kim JT, Seo S, Lim KT (2012) Encapsulation of Fe3O4 magnetic nanoparticles with poly(methyl methacrylate) via surface functionalized thiol-lactam initiated radical polymerization. Appl Surf Sci 258(7):2959–2966CrossRefGoogle Scholar
  17. 17.
    Hwang HS, Bae JH, Kim HG, Lim KT (2010) Synthesis of silica–polystyrene core–shell nanoparticles via surface thiol-lactam initiated radical polymerization. Eur Polym J 46(8):1654–1659CrossRefGoogle Scholar
  18. 18.
    Hung CY, Wang CC, Chen CY (2013) Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer 54(7):1860–1866CrossRefGoogle Scholar
  19. 19.
    Wu CP, Wang CC, Chen CY (2014). J Polym Sci B: Polym Phys 52(12):823–832CrossRefGoogle Scholar
  20. 20.
    Wu CP, Wang CC, Chen CY (2015) Influence of asymmetric ratio of polystyrene-block-poly(methyl methacrylate) block copolymer on the crystallization rate of PLA. Eur Polym J 66(0):160–169CrossRefGoogle Scholar
  21. 21.
    Mishra A, Daswal S (2006) 1-(Bromoacetyl)pyrene, a novel photoinitiator for the copolymerization of styrene and methylmethacrylate. Radiat Phys Chem 75(9):1093–1100CrossRefGoogle Scholar
  22. 22.
    Bhanvase BA, Sonawane SH, Pinjari DV, Gogate PR, Pandit AB (2014) Kinetic studies of semibatch emulsion copolymerization of methyl methacrylate and styrene in the presence of high intensity ultrasound and initiator. Chem Eng Process Process Intensif 85(0):168–177CrossRefGoogle Scholar
  23. 23.
    Chen S, Binder WH (2015) Controlled copolymerization of n-butyl acrylate with semifluorinated acrylates by RAFT polymerization. Polym Chem 6(3):448–458CrossRefGoogle Scholar
  24. 24.
    Wang H, Kolodka E, Tande BM (2013) Thermomechanical and Rheological Studies of Copolymers of Methyl Methacrylate with a Series of Linear Vinyl Esters. Ind Eng Chem Res 52(14):5111–5119CrossRefGoogle Scholar
  25. 25.
    Buchmeiser MR, Marino MG (2012) Co(acac)2-Mediated Radical Polymerization of Acrylonitrile: Control Over Molecular Weights and Copolymerization With Methyl Methacrylate. Macromol Mater Eng 297(9):894–901CrossRefGoogle Scholar
  26. 26.
    Dossi M, Liang K, Hutchinson RA, Moscatelli D (2010). J Phys Chem B 14(12):4213–4222CrossRefGoogle Scholar
  27. 27.
    Khesareh R, McManus NT, Penlidis A (2006). J Macromol Sci A 43(1):23–37CrossRefGoogle Scholar
  28. 28.
    Nicolas J, Brusseau S, Charleux B (2010). J Polym Sci A: Polym Chem 48(1):34–47CrossRefGoogle Scholar
  29. 29.
    Achilias DS (2007) A Review of Modeling of Diffusion Controlled Polymerization Reactions. Macromol Theory Simul 16(4):319–347CrossRefGoogle Scholar
  30. 30.
    Semsarzadeh MA, Abdollahi M (2008) Kinetic study of atom transfer radical homo- and copolymerization of styrene and methyl methacrylate initiated with trichloromethyl-terminated poly(vinyl acetate) macroinitiator. Polymer 49(13–14):3060–3069CrossRefGoogle Scholar
  31. 31.
    Gao J, Li D, Wang D, Yang L (2000) Rheological behavior and mechanical properties of blends of chlorinated polyethylene with poly(acrylonitrile–styrene–methyl methacrylate). Eur Polym J 36(11):2517–2522CrossRefGoogle Scholar
  32. 32.
    Rahdar SS, Ahmadi E, Abdollahi M, Hemmati M (2014). J Polym Res 21(11):582CrossRefGoogle Scholar
  33. 33.
    Fineman M, Ross SD (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5(2):259–262CrossRefGoogle Scholar
  34. 34.
    Yu X, Levine SE, Broadbelt LJ (2008) Kinetic Study of the Copolymerization of Methyl Methacrylate and Methyl Acrylate Using Quantum Chemistry. Macromolecules 41(21):8242–8251CrossRefGoogle Scholar
  35. 35.
    Khesareh R, McManus NT, Penlidis A (2006) High temperature bulk copolymerization of methyl methacrylate and acrylonitrile. I. Reactivity ratio estimation. J Appl Polym Sci 100(1):843–851CrossRefGoogle Scholar
  36. 36.
    Ramana Reddy GV, Prasad Babu YP, Rami Reddy NS (2002) Microemulsion and conventional emulsion copolymerizations of methyl methacrylate with acrylonitrile. J Appl Polym Sci 85(7):1503–1510CrossRefGoogle Scholar
  37. 37.
    Zhou X, Zhu J, Xing M, Zhang Z, Cheng Z, Zhou N, Zhu X (2011) Synthesis and characters of hyperbranched poly(vinyl acetate) by RAFT polymeraztion. Eur Polym J 47(10):1912–1922CrossRefGoogle Scholar
  38. 38.
    Abdollahi M, Sharifpour M (2007) A new simple procedure to calculate monomer reactivity ratios by using on-line 1H NMR kinetic experiments: Copolymerization system with greater difference between the monomer reactivity ratios. Polymer 48(1):25–30CrossRefGoogle Scholar
  39. 39.
    Abdollahi M, Massoumi B, Yousefi MR, Ziaee F (2012) Free-radical homo- and copolymerization of vinyl acetate and n-butyl acrylate: Kinetic studies by online 1H NMR kinetic experiments. J Appl Polym Sci 123(1):543–553CrossRefGoogle Scholar
  40. 40.
    Quirk RP, Lynch T (1993) Anionic synthesis of primary amine-functionalized polystyrenes using 1-[4-[N,N-bis(trimethylsilyl)amino]phenyl]-1-phenylethylene. Macromolecules 26(6):1206–1212CrossRefGoogle Scholar
  41. 41.
    Quirk RP, Lee B (1992) Experimental Criteria for Living Polymerizations. Polym Int 27(4):359–367CrossRefGoogle Scholar
  42. 42.
    Dubé MA, Penlidis A (1995) A systematic approach to the study of multicomponent polymerization kinetics?the butyl acrylate/methyl methacrylate/vinyl acetate example: 1. Bulk copolymerization. Polymer 36(3):587–598CrossRefGoogle Scholar
  43. 43.
    Ma YD, Won YC, Kubo K, Fukuda T (1993) Propagation and termination processes in the free-radical copolymerization of methyl methacrylate and vinyl acetate. Macromolecules 26(25):6766–6770CrossRefGoogle Scholar
  44. 44.
    Brar AS, Charan S (1993) Reactivity ratios and microstructure determination of (vinyl acetate)-(methyl methacrylate) copolymers. Eur Polym J 29(5):755–759CrossRefGoogle Scholar
  45. 45.
    Scorah MJ, Hua H, Dubé MA (2001) Bulk and solution copolymerization of methyl methacrylate and vinyl acetate. J Appl Polym Sci 82(5):1238–1255CrossRefGoogle Scholar

Copyright information

© The Polymer Society, Taipei 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Chemical and Materials EngineeringSouthern Taiwan University of Science and TechnologyTainanTaiwan

Personalised recommendations